精英家教网 > 高中数学 > 题目详情

(本小题12分) 如图四棱柱ABCD-A1B1C1D1的底面ABCD为正方形,侧棱与底边长均为a,
且∠A1AD=∠A1AB=60°。

①求证四棱锥 A1-ABCD为正四棱锥;
②求侧棱AA1到截面B1BDD1的距离;
③求侧面A1ABB1与截面B1BDD1的锐二面角大小。

(1)因为Rt△ABD的外心是斜边BD的中点,所以O是底面正方形ABCD的中心,因此证明。
(2)a
(3)arctan

解析试题分析:(1)由AA1=AD=AB,及∠A1AD=∠A1AB=60°△A1AD、△AA1B都是正三角形,从而AA1=A1D=A1B,设A1在底面ABCD的射影为O,则由斜线长相等推出射影长也相等,所以O是Rt△ABD的外心,因为Rt△ABD的外心是斜边BD的中点,所以O是底面正方形ABCD的中心。所以四棱锥A1—ABCD是正四棱锥。

(2)由DB⊥平面AA1O截面BB1D1D⊥平面AA1O点O与侧棱AA1的距离d等于AA1和截面BB1D1D之间的距离。取AA1的中点M,则OM∥A1C,且OM⊥AA1,OM=A1C=a,∴所求距离为a。
(3)注意到所求二面角的棱是B1B,由M是AA1的中点MB⊥AA1,B1B∥AA1MB⊥B1B,又DB⊥AA1,AA1//B1BDB⊥B1B,

∴∠MBD是所求二面角的平面角。不妨设AB=a=2,则BD=2,MB=MD=
∴tanMBD=
∴侧面A1ABB1与截面B1BDD1的夹角为arctan
考点:本试题考查了距离和角的求解运用。
点评:对于立体几何中的角和距离的求解是高考的一个方向,那么解决这类问题一般可以从两个角度来做,一个就是利用几何性质,结合定理和推论来了得到,另一个就是建立直角坐标系,通过法向量和直线的方向向量来表示得到,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分为12分)
在四棱锥中,底面,,,,的中点.

(I)证明:
(II)证明:平面
(III)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)如图所示,四棱锥中,底面是边长为2的菱形,是棱上的动点.

(Ⅰ)若的中点,求证://平面
(Ⅱ)若,求证:
(III)在(Ⅱ)的条件下,若,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知直三棱柱中,,若中点.
(Ⅰ)求证:∥平面
(Ⅱ)求异面直线所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面ABCD是一直角梯形,,,且PA=AD=DC=AB=1.

(1)证明:平面平面
(2)设AB,PA,BC的中点依次为M、N、T,求证:PB∥平面MNT
(3)求异面直线所成角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
如图,四棱锥的底面为菱形,平面, E、F分别为的中点,

(Ⅰ)求证:平面平面
(Ⅱ)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直四棱柱ABCD—A1B1C1D1的高为3,底面是边长为4且∠DAB=60°的菱形,AC∩BD=0,A1C1∩B1D1=O1,E是O1A的中点.

(1)求证:平面O1AC平面O1BD
(2)求二面角O1-BC-D的大小;
(3)求点E到平面O1BC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)在几何体ABCDE中,∠BAC=,DC⊥平面ABC,EB⊥平面ABC,F是BC的中点,AB=AC=BE=2,CD=1

(Ⅰ)求证:DC∥平面ABE;
(Ⅱ)求证:AF⊥平面BCDE;
(Ⅲ)求证:平面AFD⊥平面AFE.

查看答案和解析>>

同步练习册答案