(本题满分为12分)
在四棱锥中,底面,,,,,是的中点.
(I)证明:;
(II)证明:平面;
(III)求二面角的余弦值.
科目:高中数学 来源: 题型:解答题
已知四棱柱的底面是边长为1的正方形,侧棱垂直底边ABCD四棱柱,,
E是侧棱AA1的中点,求
(1)求异面直线与B1E所成角的大小;
(2)求四面体的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,正方形与梯形所在的平面互相垂直,,∥,,点在线段上.
(I)当点为中点时,求证:∥平面;
(II)当平面与平面所成锐二面角的余弦值为时,求三棱锥 的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题13分)如图1,在三棱锥P—ABC中,平面ABC,,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示。
(1)证明:平面PBC;
(2)求三棱锥D—ABC的体积;
(3)在的平分线上确定一点Q,使得平面ABD,并求此时PQ的长。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知△BCD中,∠BCD=,BC=CD=1,AB⊥平面BCD,∠ADB=,E、F分别是AC、AD上的动点,且
(Ⅰ)求证:不论λ为何值,总有平面BEF⊥平面ABC;
(Ⅱ)当λ为何值时,平面BEF⊥平面ACD ?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
如图4,在三棱柱中,△是边长为的等边三角形,
平面,,分别是,的中点.
(1)求证:∥平面;
(2)若为上的动点,当与平面所成最大角的正切值为时,
求平面 与平面所成二面角(锐角)的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,三棱锥P-ABC中,PC平面ABC,PC=AC=2, AB=BC,D是PB上一点,且CD平面PAB
(1)求证:AB平面PCB;
(2)求异面直线AP与BC所成角的大小;
(3)求二面角C-PA-B 的大小的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分10分)如图,四边形ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中点.
求证:(1) PA∥平面BDE .
(2)平面PAC平面BDE .
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题12分) 如图四棱柱ABCD-A1B1C1D1的底面ABCD为正方形,侧棱与底边长均为a,
且∠A1AD=∠A1AB=60°。
①求证四棱锥 A1-ABCD为正四棱锥;
②求侧棱AA1到截面B1BDD1的距离;
③求侧面A1ABB1与截面B1BDD1的锐二面角大小。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com