精英家教网 > 高中数学 > 题目详情

已知四棱柱的底面是边长为1的正方形,侧棱垂直底边ABCD四棱柱,
E是侧棱AA1的中点,求

(1)求异面直线与B1E所成角的大小;
(2)求四面体的体积.

(1)异面直线BD与B1E成600角 (2)

解析试题分析:(1)连接B1D1  ED1
四棱柱中BD// B1D1,所以∠EB1D1或其补角为所求
因为AA1="2" AB="1" 所以B1D1=ED1=B1E= ∠EB1D1=600
因此异面直线BD与B1E成600角 . 
(2)因为
所以  .
考点:异面直线及其所成的角;棱柱、棱锥、棱台的体积.
点评:本题在正四棱柱中求异面直线所成角,并求四面体的体积,着重考查了正棱柱的性质、异面直线所成
角和体积的求法等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,正方形ABCD所在平面与圆O所在平面相交于CD,线段CD为圆O的弦,AE垂直于圆O所在平面,垂足E是圆O上异于C、D的点,AE=3,正方形ABCD的边长为

(1)求证:平面ABCD丄平面ADE;
(2)求四面体BADE的体积;
(3)试判断直线OB是否与平面CDE垂直,并请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如下图所示,在直三棱柱ABCA1B1C1中,AC=3,BC=4,AB=5,AA1=4,点DAB的中点.

(1)求证:ACBC1
(2)求证:AC1平面CDB1
(3)求异面直线AC1B1C所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四边形中,,点为线段上的一点.现将沿线段翻折到(点与点重合),使得平面平面,连接.

(Ⅰ)证明:平面
(Ⅱ)若,且点为线段的中点,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,在直角梯形中,,且
现以为一边向形外作正方形,然后沿边将正方形翻折,使平面与平面垂直,的中点,如图2.
(1)求证:∥平面
(2)求证:平面
(3)求点到平面的距离.
  
                                    图

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知三棱锥S—ABC的底面是正三角形,A点在侧面SBC上的射影H是△SBC的垂心.

(1)求证:BC⊥SA
(2)若S在底面ABC内的射影为O,证明:O为底面△ABC的中心;
(3)若二面角H—AB—C的平面角等于30°,SA=,求三棱锥S—ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,G为AD中点.

(1)请在线段CE上找到点F的位置,使得恰有直线BF∥平面ACD,并证明这一事实;
(2)求平面BCE与平面ACD所成锐二面角的大小;
(3)求点G到平面BCE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱ABCA1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,点EF分别在棱BB1CC1上,且BEBBC1FCC1.

(1)求异面直线AEA1 F所成角的大小;
(2)求平面AEF与平面ABC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分为12分)
在四棱锥中,底面,,,,的中点.

(I)证明:
(II)证明:平面
(III)求二面角的余弦值.

查看答案和解析>>

同步练习册答案