精英家教网 > 高中数学 > 题目详情

如图1,在直角梯形中,,且
现以为一边向形外作正方形,然后沿边将正方形翻折,使平面与平面垂直,的中点,如图2.
(1)求证:∥平面
(2)求证:平面
(3)求点到平面的距离.
  
                                    图

(1)利用线线平行证明线面平行;(2)利用线线垂直证明线面垂直;(3)利用等体积法求解点到面平面的距离

解析试题分析:

解:(1)证明:取中点,连结
在△中,分别为的中点, 所以,且
由已知, 所以,且.           3分
所以四边形为平行四边形. 所以.                4分
又因为平面,且平面,所以∥平面.         5分
(2)证明:在正方形中,
又因为平面平面,且平面平面
所以平面.  所以.               7分
在直角梯形中,,可得
在△中,
所以.所以.    8分
所以平面.                                        10分
(3)解法一:由(2)知,平面
又因为平面, 所以平面平面.            11分
过点的垂线交于点,则平面
所以点到平面的距离等于线段的长度                12分   
在直角三角形中,
所以
所以点到平面的距离等于.                          14分
解法二:由(2)知,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,三棱锥P-ABC中,PC平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD平面PAB

(1)求证:AB平面PCB;
(2)求异面直线AP与BC所成角的大小;
(3)求二面角C-PA-B 的大小的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在四棱锥中,底面为矩
形,⊥平面,上的点,若⊥平面

(1)求证:的中点;
(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

本题共有2个小题,第(1)小题满分6分,第(2)小题满分6分.
如图,已知正四棱柱的底面边长是,体积是分别是棱的中点.

(1)求直线与平面所成的角(结果用反三角函数表示);
(2)求过的平面与该正四棱柱所截得的多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面
的中点.

(Ⅰ)求和平面所成的角的大小;
(Ⅱ)证明平面
(Ⅲ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四棱柱的底面是边长为1的正方形,侧棱垂直底边ABCD四棱柱,
E是侧棱AA1的中点,求

(1)求异面直线与B1E所成角的大小;
(2)求四面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,直角梯形与等腰直角三角形所在的平面互相垂直.

(1)求直线与平面所成角的正弦值;
(2)线段上是否存在点,使// 平面?若存在,求出;若不存在,说明理由.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正三棱柱中,的中点,是线段上的动点(与端点不重合),且.

(1)若,求证:;
(2)若直线与平面所成角的大小为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知△BCD中,∠BCD=,BC=CD=1,AB⊥平面BCD,∠ADB=,E、F分别是AC、AD上的动点,且

(Ⅰ)求证:不论λ为何值,总有平面BEF⊥平面ABC;
(Ⅱ)当λ为何值时,平面BEF⊥平面ACD ?

查看答案和解析>>

同步练习册答案