如图,三棱锥P-ABC中,PC平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD平面PAB
(1)求证:AB平面PCB;
(2)求异面直线AP与BC所成角的大小;
(3)求二面角C-PA-B 的大小的余弦值。
(1) PC平面ABC,AB平面ABC,PCAB,CD平面PAB,AB平面PAB,
CD AB。又,AB 平面PCB (2) (3)
解析试题分析:(1) PC平面ABC,AB平面ABC,PCAB,
CD平面PAB,AB平面PAB, CD AB。又,AB 平面PCB
(2)由(1)AB 平面PCB ,PC=AC=2, 又AB=BC, 可求得BC=
以B为原点,如图建立空间直角坐标系,
则A(0,,0),B(0,0,0), C(,0,0) P(,0,2)
=(,-,2),=(,0,0) 则=+0+0=2
异面直线AP与BC所成的角为
(3)设平面PAB的法向量为m=(x,y,z)=(0,-,0),=(,,2)
则,即,得m=(,0,-1)设平面PAC的法向量为n=(x,y,z)
=(0,0,-2),=(,-,0),则
得n=(1,1,0)cos<m,n>= 二面角C-PA-B大小的余弦值为
考点:线面垂直的判定及异面直线所成角,二面角
点评:线面垂直的判定定理:一条直线垂直于平面内两条相交直线,则直线垂直于平面,向量法求两直线所成角,二面角时首先找到直线的方向向量和平面的法向量,通过求解向量夹角的到相应角
科目:高中数学 来源: 题型:解答题
如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形, AF∥DE,AF⊥FE,AF=AD=2 DE=2.
(Ⅰ) 求异面直线EF与BC所成角的大小;
(Ⅱ) 若二面角A-BF-D的平面角的余弦值为,求AB的长.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知直三棱柱ABC-A1B1C1中,AD⊥平面A1BC,其垂足D落在直线A1B上.
(1)求证:平面A1BC⊥平面ABB1A1;
(2)若,AB=BC=2,P为AC中点,求三棱锥的体积。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示的几何体中,四边形为矩形,为直角梯形,且 = = 90°,平面平面,,
(1)若为的中点,求证:平面;
(2)求平面与平面所成锐二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,正方形ABCD所在平面与圆O所在平面相交于CD,线段CD为圆O的弦,AE垂直于圆O所在平面,垂足E是圆O上异于C、D的点,AE=3,正方形ABCD的边长为.
(1)求证:平面ABCD丄平面ADE;
(2)求四面体BADE的体积;
(3)试判断直线OB是否与平面CDE垂直,并请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,矩形ABCD中,AB=3,BC=4.E,F分别在线段BC和AD上,EF//AB,将矩形ABEF沿EF折起.记折起后的矩形为MNEF,且平面MNEF⊥平面ECDF.
(1)求证:NC∥平面MFD;
(2)若EC=3,求证:ND⊥FC;
(3)求四面体NFEC体积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图1,在直角梯形中,,,且.
现以为一边向形外作正方形,然后沿边将正方形翻折,使平面与平面垂直,为的中点,如图2.
(1)求证:∥平面;
(2)求证:平面;
(3)求点到平面的距离.
图 图
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com