精英家教网 > 高中数学 > 题目详情

已知直三棱柱ABC-A1B1C1中,AD⊥平面A1BC,其垂足D落在直线A1B上.

(1)求证:平面A1BC⊥平面ABB1A1
(2)若,AB=BC=2,P为AC中点,求三棱锥的体积。

(1)利用线线垂直证明线面垂直;(2)

解析试题分析:直三棱柱ABC-A1B1C1中,A A1⊥平面ABC,
∴A A1⊥BC,
∵AD⊥平面A1BC,
∴AD⊥BC,
∵A A1,AD为平面ABB1A1内两相交直线,
∴BC⊥平面ABB1A1
又∵平面A1BC,
∴平面A1BC⊥平面ABB1A1                 7分
(2) 由等积变换得
在直角三角形中,由射影定理()知

∴三棱锥的高为                 10分
又∵底面积               12分
=             14分
法二:连接,取中点,连接,∵P为AC中点, 
,,                9分
由(1)AD⊥平面A1BC,∴⊥平面A1BC,
为三棱锥P- A1BC的高,                  11分
由(1)BC⊥平面ABB1A1             12分
,                   14分
考点:本题考查了空间中的线面关系
点评:高考中常考查空间中平行关系与垂直关系的证明以及几何体体积的计算,这是高考的重点内容.证明的关键是熟练掌握并灵活运用相关的判定定理与性质定理

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在直三棱柱中,

(1)求异面直线 与所成角的大小;
(2)求多面体的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱锥中,的中点,,二面角的大小为

(1)证明:平面
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知正方形和矩形所在的平面互相垂直, 是线段的中点。

(1)证明:∥平面
(2)求异面直线所成的角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥P—ABCD中,底面ABCD是边长为的正方形E, F分别为PC,BD的中点,侧面PAD⊥底面ABCD,且PA=PD=AD.

(Ⅰ)求证:EF//平面PAD;
(Ⅱ)求三棱锥C—PBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面分别为的中点.

(I)证明:平面
(II)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱锥P-ABC中,PC平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD平面PAB

(1)求证:AB平面PCB;
(2)求异面直线AP与BC所成角的大小;
(3)求二面角C-PA-B 的大小的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是矩形,侧棱⊥底面的中点,的中点.

(1)证明:平面
(2)若为直线上任意一点,求几何体的体积;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

本题共有2个小题,第(1)小题满分6分,第(2)小题满分6分.
如图,已知正四棱柱的底面边长是,体积是分别是棱的中点.

(1)求直线与平面所成的角(结果用反三角函数表示);
(2)求过的平面与该正四棱柱所截得的多面体的体积.

查看答案和解析>>

同步练习册答案