如图所示,在四棱锥中,底面为矩
形,⊥平面,,为上的点,若⊥平面
(1)求证:为的中点;
(2)求二面角的大小.
(1)由PD⊥平面MAB,平面MAB,则PD⊥MA,同时PA=AD,进而得到证明。
(2)120°
解析试题分析:解:(1)由PD⊥平面MAB,平面MAB,则PD⊥MA 2分
又PA=AD,则△APM≌△AMD,因而PM=DM,即M为PD的中点; 5分
(2)以A原点,以所在直线分别为x轴、y轴、z轴建立空间直角坐标系,
则A(0,0,0),B(1,0,0),C(1,2,0),D(0,2,0),P(0,0,2),M(0,1,1),
由(1)知=(0,-1,1)为平面MAB的法向量, 7分
设平面MBC的法向量=(x,y,z),=(1,1,-1),= (0,2,0),=0, =0,即,令x=z=1,则=(1,0,1), 10分
, 11分
而二面角A—BM—C为钝角,因而其大小为120°. 12分
考点:二面角的平面角以及线线垂直的运用
点评:解决的关键是利用空间向量结合向量的数量积来表示角的大小,属于基础题。
科目:高中数学 来源: 题型:解答题
如图,矩形ABCD中,AB=3,BC=4.E,F分别在线段BC和AD上,EF//AB,将矩形ABEF沿EF折起.记折起后的矩形为MNEF,且平面MNEF⊥平面ECDF.
(1)求证:NC∥平面MFD;
(2)若EC=3,求证:ND⊥FC;
(3)求四面体NFEC体积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如下图所示,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.
(1)求证:AC⊥BC1;
(2)求证:AC1∥平面CDB1;
(3)求异面直线AC1与B1C所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
直棱柱ABCD—A1B1C1D1中,底面ABCD是直角梯形,∠BAD=∠ADC=90°,AB=2AD=2CD=2.
(1)求证:平面ACB1⊥平面BB1C1C;
(2)在A1B1上是否存在一点P,使得DP与平面ACB1平行?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图1,在直角梯形中,,,且.
现以为一边向形外作正方形,然后沿边将正方形翻折,使平面与平面垂直,为的中点,如图2.
(1)求证:∥平面;
(2)求证:平面;
(3)求点到平面的距离.
图 图
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图:在多面体EF-ABCD中,四边形ABCD是平行四边形,△EAD为正三角形,且平面EAD平面ABCD,EF∥AB, AB=2EF=2AD=4,.
(Ⅰ)求多面体EF-ABCD的体积;
(Ⅱ)求直线BD与平面BCF所成角的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com