精英家教网 > 高中数学 > 题目详情

(本小题满分14分)
如图4,在三棱柱中,△是边长为的等边三角形,
平面分别是的中点.

(1)求证:∥平面
(2)若上的动点,当与平面所成最大角的正切值为时,
求平面 与平面所成二面角(锐角)的余弦值.

(1)延长的延长线于点,连接,且的中点. ∴.∴∥平面(2)

解析试题分析:解法一:
(1)证明:延长的延长线于点,连接.

,且
的中点.  
的中点,

平面平面
∥平面
(2)解:∵平面平面
.
∵△是边长为的等边三角形,的中点,

平面平面
平面.
与平面所成的角.  

在Rt△中,
∴当最短时,的值最大,则最大.
∴当时,最大. 此时,.
.
平面
平面.
平面平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知三棱锥S—ABC的底面是正三角形,A点在侧面SBC上的射影H是△SBC的垂心.

(1)求证:BC⊥SA
(2)若S在底面ABC内的射影为O,证明:O为底面△ABC的中心;
(3)若二面角H—AB—C的平面角等于30°,SA=,求三棱锥S—ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知ABCD是矩形,AD=2AB,E,F分别是线段AB,BC的中点,PA⊥平面ABCD.
(Ⅰ)求证:DF⊥平面PAF;
(Ⅱ)在棱PA上找一点G,使EG∥平面PFD,当PA=AB=4时,求四面体E-GFD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在四面体中,,且E、F分别是AB、BD的中点,

求证:(1)直线EF//面ACD
(2)面EFC⊥面BCD

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分为12分)
在四棱锥中,底面,,,,的中点.

(I)证明:
(II)证明:平面
(III)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,五面体中, ,底面ABC是正三角形, =2.四边形是矩形,二面角为直二面角,D为中点。
(I)证明:平面
(II)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知四棱锥平面
,底面为直角梯形,
分别是的中点.

(1)求证:// 平面
(2)求截面与底面所成二面角的大小;
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知两个正四棱锥P-ABCD与Q-ABCD的高分别为1和2,AB=4.

(Ⅰ)证明PQ⊥平面ABCD;
(Ⅱ)求异面直线AQ与PB所成的角;
(Ⅲ)求点P到平面QAD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面ABCD是一直角梯形,,,且PA=AD=DC=AB=1.

(1)证明:平面平面
(2)设AB,PA,BC的中点依次为M、N、T,求证:PB∥平面MNT
(3)求异面直线所成角的余弦值

查看答案和解析>>

同步练习册答案