精英家教网 > 高中数学 > 题目详情

(本小题满分14分)
如图,四棱锥的底面为菱形,平面, E、F分别为的中点,

(Ⅰ)求证:平面平面
(Ⅱ)求平面与平面所成的锐二面角的余弦值.

(Ⅰ)先证得
再证得.由,证出平面,所以,平面平面
(Ⅱ)平面与平面所成的锐二面角的余弦值为

解析试题分析:(Ⅰ)∵四边形是菱形,

中,

,即
,   ∴.…………………2分
平面平面
.又∵
平面,………………………………………4分
又∵平面
平面平面.  ………………………………6分
(Ⅱ)解法一:由(1)知平面,而平面
∴平面平面 ………………………7分
平面,∴
由(Ⅰ)知,又
平面,又平面
∴平面平面.…………………………9分
∴平面是平面与平面的公垂面.
所以,就是平面与平面所成的锐二面角的平面角.……10分
中,,即.……………11分


所以,平面与平面所成的锐二面角的余弦值为.…………14分

理(Ⅱ)解法二:以为原点,分别为轴、轴的正方向,建立空间直角坐标系,如图所示.因为,所以,
,…………7分
.………8分
由(Ⅰ)知平面
故平面的一个法向量为.……………………9分
设平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,三棱锥P-ABC中,PC平面ABC,PC=AC=2, AB=BC,D是PB上一点,且CD平面PAB

(1)求证:AB平面PCB;
(2)求异面直线AP与BC所成角的大小;
(3)求二面角C-PA-B 的大小的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题15分)如图,在四棱锥中,底面 , ,的中点。

(Ⅰ)证明:
(Ⅱ)证明:平面
(Ⅲ)求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分) 如图四棱柱ABCD-A1B1C1D1的底面ABCD为正方形,侧棱与底边长均为a,
且∠A1AD=∠A1AB=60°。

①求证四棱锥 A1-ABCD为正四棱锥;
②求侧棱AA1到截面B1BDD1的距离;
③求侧面A1ABB1与截面B1BDD1的锐二面角大小。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在四棱锥中,底面ABCD是边长为a的正方形,侧面底面ABCD,且,若EF分别为PCBD的中点.

(1)求证:平面PAD
(2)求证:平面PDC平面PAD
(3)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,长方体中,,点上,且

(Ⅰ)证明:平面
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,BCD=60,E是CD的中点,PA底面ABCD,PA=2.

(1)证明:平面PBE平面PAB;
(2)求平面PAD和平面PBE所成二面角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分) 如图,P—ABCD是正四棱锥,是正方体,其中 

(1)求证:
(2)求平面PAD与平面所成的锐二面角的余弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)
如图,在三棱柱中,平面, ,点的中点.

求证:(1);(2)平面.

查看答案和解析>>

同步练习册答案