精英家教网 > 高中数学 > 题目详情

【题目】对于函数y=3sin(2x+ ),
(1)求振幅、初相和最小正周期;
(2)简述此函数图象是怎样由函数y=sinx的图象作变换得到的.

【答案】
(1)解:对于函数y=3sin(2x+ ),它的振幅为3,初相为 ,最小正周期为
(2)解:把函数y=sinx的图象向左平移 个单位,可得y=sin(x+ )的图象;

再把横坐标变为原来的 倍,可得y=sin(2x+ )的图象;

再把纵坐标变为原来的3倍,可得y=3sin(2x+ )的图象


【解析】y=Asin(ωx+φ)的图象变换规律,再根据y=Asin(ωx+φ)的振幅、周期、初相的定义,得出结论.
【考点精析】关于本题考查的函数y=Asin(ωx+φ)的图象变换,需要了解图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在上的函数为增函数,对任意都有为常数)

(1)判断为何值时,为奇函数,并证明;

(2)设上的增函数,且,若不等式对任意恒成立,求实数的取值范围.

(3)若的前项和,求正整数,使得对任意均有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中为常数且)在处取得极值.

(Ⅰ)当时,求的单调区间;

(Ⅱ)若上的最大值为1,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,若在区间上有且只有一个极值点,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点作直线分别交轴的正半轴于两点.

(Ⅰ)当取最小值时,求出最小值及直线的方程;

(Ⅱ)当取最小值时,求出最小值及直线的方程;

(Ⅲ)当取最小值时,求出最小值及直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2015年12月,华中地区数城市空气污染指数“爆表”,此轮污染为2015年以来最严重的污染过程,为了探究车流量与的浓度是否相关,现采集到华中某城市2015年12月份某星期星期一到星期日某一时间段车流量与的数据如表:

时间

星期一

星期二

星期三

星期四

星期五

星期六

星期日

车流量(万辆)

1

2

3

4

5

6

7

的浓度(微克/立方米)

28

30

35

41

49

56

62

(1)由散点图知具有线性相关关系,求关于的线性回归方程;(提示数据:

(2)(I)利用(1)所求的回归方程,预测该市车流量为12万辆时的浓度;(II)规定:当一天内的浓度平均值在内,空气质量等级为优;当一天内的浓度平均值在内,空气质量等级为良,为使该市某日空气质量为优或者为良,则应控制当天车流量不超过多少万辆?(结果以万辆为单位,保留整数)参考公式:回归直线的方程是,其中 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,以为顶点的六面体中, 均为等边三角形,且平面平面 平面 .

(1)求证: 平面

(2)求此六面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用分层抽样的方法从某校学生中抽取一个容量为60的样本,其中高二年级抽取20人,高三年级抽取25人,已知该校高一年级共有800人,则该校学生总数为人.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,圆C经过A(0,1),B(3,4),C(6,1)三点.
(1)求圆C的方程;
(2)若圆C与直线x﹣y+a=0交于A,B两点,且OA⊥OB,求a的值.

查看答案和解析>>

同步练习册答案