精英家教网 > 高中数学 > 题目详情
已知二面角α-l-β,点A∈α,B∈β,AC⊥l于点C,BD⊥l于D,且AC=CD=DB=1,求证:AB=2的充要条件α-l-β=1200
证明:充分性:
AC
=
a
CD
=
b
DB
=
c

∵AC=CD=DB=1,
|
a
|=|
b
|=|
c
|=1

又∵AC⊥l于点C,BD⊥l于D
a
b
>=<
b
c
>=90°,<
a
c
>=60°

a
2
=
b
2
=
c
2
=1,
a
b
=
b
c
=0,
a
c
=
1
2

|
AB
|=
(
a
+
b
+
c
)
2
=
a
2
+
b
2
+
c
2
+2
a
b
+2
b
c
+2
a
c
=2

必要性:∵|
AB
|=
(
a
+
b
+
c
)
2
=
a
2
+
b
2
+
c
2
+2
a
b
+2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,直四棱柱ABCD-A1B1C1D1中,平面A1BC⊥平面A1ABB1,AB=BC=2,AA1=2
2

(1)求证:BC⊥平面A1ABB1
(2)求直线A1B与平面A1AC成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,四边形ABCD为正方形,PA⊥面ABCD,且PA=AB=4,E为PD中点.
(1)证明:PB平面AEC;
(2)证明:平面PCD⊥平面PAD;
(3)求二面角E-AC-D的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥P-ABC中,已知PC⊥平面ABC,点C在平面PBA内的射影D在直线PB上.
(1)求证:AB⊥平面PBC;
(2)设AB=BC,直线PA与平面ABC所成的角为45°,求异面直线AP与BC所成的角;
(3)在(2)的条件下,求二面角C-PA-B的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AA1=AB=BC=3,AC=2,D是AC的中点.
(Ⅰ)求证:B1C平面A1BD;
(Ⅱ)求二面角A1-BD-B1的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AD=1,AB=2,E、F分别是AB、PD的中点.
(1)求证:AF平面PEC;
(2)求二面角P-EC-D的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,∠ACB=90°,AB=2,BC=1,AA1=
6
,D是棱CC1的中点.
(Ⅰ)证明:A1D⊥平面AB1C1
(Ⅱ)求平面A1B1A与平面AB1C1所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在?ABCD中,=a,=b,=3,M为BC的中点,则=________(用a,b表示).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在△中,已知,则     

查看答案和解析>>

同步练习册答案