精英家教网 > 高中数学 > 题目详情
如图,直四棱柱ABCD-A1B1C1D1中,平面A1BC⊥平面A1ABB1,AB=BC=2,AA1=2
2

(1)求证:BC⊥平面A1ABB1
(2)求直线A1B与平面A1AC成角的正弦值.
(1)∵直四棱柱ABCD-A1B1C1D1中,平面A1BC⊥平面A1ABB1
∴BC⊥AB,BC⊥BB1
又∵AB∩BB1=B,
∴BC⊥平面A1ABB1
(2)以DA为x轴,以DC为y轴,以DD1为z轴,建立空间直角坐标系,
∵直四棱柱ABCD-A1B1C1D1中,平面A1BC⊥平面A1ABB1,AB=BC=2,AA1=2
2

A1(2,0,2
2
)
,B(2,2,0),A(2,0,0),C(0,2,0),
AA1
=(0,0,2
2
),
AC
=(-2,2,0),
A1B
=(0,2,-2
2

设平面A1AC的法向量为
n
=(x,y,z),则
n
AA1
=0
n
AC
=0,
2
2
z=0
-2x+2y=0
,解得
n
=(1,1,0),
设直线A1B与平面A1AC成角为θ,
则sinθ=|cos<
n
A1B
>|=|
0+2+0
2
12
|=
6
6

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知EFGM分别是四面体的棱ADCDBDBC的中点,求证:AM∥平面EFG

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方体ABCD-A1B1C1D1的棱长为4,E,F分别是BC,CD上的点,且BE=CF=3.
(1)求B1F与平面BCC1B1所成角的正切值;
(2)求证:B1F⊥D1E.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角梯形PBCD中,∠D=∠C=
π
2
,BC=CD=2,PD=4
,A为PD的中点,如图.将△PAB沿AB折到△SAB的位置,使SB⊥BC,点E在SD上,且
SE
=
1
3
SD
,如图.
(Ⅰ)求证:SA⊥平面ABCD;
(Ⅱ)求二面角E-AC-D的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别为A1B1,CD的中点.
(1)求直线EC与AF所成角的余弦值;
(2)求二面角E-AF-B的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱ABC-A1B1C1中,侧面AA1CC1⊥底面ABC,AA1=A1C=AC=2,AB=BC,且AB⊥BC,O为AC的中点,E为BC1的中点
(1)求证:OE平面A1AB;
(2)求二面角A-A1B-C1的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,PA⊥平面ABCD,且PA=2AB.(1)求证:BD⊥PC;
(2)求三棱锥A-PCD的体积;
(3)求二面角B-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平面α的一个法向量为
n
=(1,-
3
,0)
,则y轴与平面α所成的角的大小为(  )
A.
π
6
B.
π
3
C.
π
4
D.
6

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知二面角α-l-β,点A∈α,B∈β,AC⊥l于点C,BD⊥l于D,且AC=CD=DB=1,求证:AB=2的充要条件α-l-β=1200

查看答案和解析>>

同步练习册答案