精英家教网 > 高中数学 > 题目详情
3.已知tanα=-$\frac{3}{5}$,则cos2($\frac{π}{4}$+α)=(  )
A.$\frac{16}{17}$B.$\frac{15}{17}$C.$\frac{9}{17}$D.$\frac{8}{17}$

分析 先计算sin2α,再利用二倍角公式求出cos2($\frac{π}{4}$+α).

解答 解:∵tanα=-$\frac{3}{5}$,
∴sin2α=2cosαsinα=$\frac{2tanα}{1+ta{n}^{2}α}$=-$\frac{15}{17}$,
∴cos2($\frac{π}{4}$+α)=$\frac{1+cos(\frac{π}{2}+2α)}{2}$=$\frac{1-sin2α}{2}$=$\frac{16}{17}$,
故选:A.

点评 本题考查二倍角公式,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.f(x)是R上的奇函数,a∈[-π,π],当x>0时,f(x)=$\frac{1}{2}$(|x+cosa|+|x+2cosa|+3cosa),若对任意x∈R,f(x-3)≤f(x)恒成立,则实数a的取值范围[-π,$\frac{π}{3}$]∪[$\frac{π}{2}$,π].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知命题甲:a∈$\left\{{a|a<-1或a>\frac{1}{3}}\right\}$,命题乙:a∈$\left\{{a|a<-\frac{1}{2}或a>1}\right\}$,当甲是真命题、且乙是假命题时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在闭区间[0,2π]上,满足等式sinx=cos1,则x=$\frac{π}{2}$-1 或$\frac{π}{2}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若$\overrightarrow{a}$=(a1,a2),$\overrightarrow{b}$(b1,b2),定义一种运算:$\overrightarrow{a}$?$\overrightarrow{b}$=(a1b1,a2b2),已知$\overrightarrow{m}$=(2,$\frac{1}{2}$),$\overrightarrow{n}$=($\frac{π}{3}$,0),且点P(x,y),在函数y=sinx的图象上运动,点Q在函数y=f(x)的图象上运动,且$\overrightarrow{OQ}$=$\overrightarrow{m}$?$\overrightarrow{OP}$+$\overrightarrow{n}$(其中O为坐标原点),则函数y=f(x)的最大值A和最小正周期T分别为 (  )
A.A=2,T=πB.A=2,T=4πC.A=$\frac{1}{2}$,T=πD.A=$\frac{1}{2}$,T=4π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知△ABC中,∠C=$\frac{π}{2}$,∠A、∠B、∠C对应的边分别为a、b、c,则直线ax+by+c=0被圆x2+y2=4所截得的弦长为(  )
A.1B.2C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设数列{an}中a1=3,且an+1=an2,则数列{an}的通项公式为an=${3}^{{2}^{n-1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.曲线f(x)=x-$\frac{3}{x}$上任一点P处的切线与直线x=0和直线y=x所围成的三角形面积为6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在(x-1)4-(x-1)5+(x-1)6-(x-1)7的展开式中,含x3的项的系数是-69.(用数字作答)

查看答案和解析>>

同步练习册答案