精英家教网 > 高中数学 > 题目详情

【题目】在三角形ABC中,分别根据下列条件解三角形,其中有两个解的是(
A.a=8b=16A=30°
B.a=25b=30A=150°
C.a=30b=40A=30°
D.a=72b=60A=135°

【答案】C
【解析】解:由正弦定理可得 ,若A成立,a=8,b=16,A=30°,有 = ,∴sinB=1,∴B=90°,故三角形ABC有唯一解. 若B成立,a=25,b=30,A=150°,有 = ,∴sinB= ,又b>a,故 B>150°,故三角形ABC无解.
若C成立,a=30,b=40,A=30°,有 = ,∴sinB= ,又b>a,故 B>A,故B可以是锐角,也可以是钝角,故三角形ABC有两个解.
若D 成立,a=72,b=60,A=135°,有 = ,∴sinB= ,由于B<A,故B为锐角,故三角形ABC有唯一解.
故选C.
由正弦定理可得 ,根据条件求得sinB的值,根据b与a 的大小判断角B的大小,从而判断三角形ABC 的解的个数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中 为常数.

(1)若是函数的一个极值点,求曲线在点处的切线方程;

(2)若函数有2个零点, 有6个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设Sn是数列{an}的前n项和,且2an+Sn=An2+Bn+C.
(1)当A=B=0,C=1时,求an
(2)若数列{an}为等差数列,且A=1,C=﹣2. ①设bn=2nan , 求数列{bn}的前n项和;
②设cn= ,若不等式cn 对任意n∈N*恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的方程:x2+y2﹣4x﹣6y+m=0,若圆C与直线a:x+2y﹣3=0相交于M、N两点,且|MN|=2
(1)求m的值;
(2)是否存在直线l:x﹣y+c=0,使得圆上有四点到直线l的距离为 ,若存在,求出c的范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图①,在矩形中, 的中点,将三角形沿翻折到图②的位置,使得平面平面.

(Ⅰ)在线段上确定点,使得平面,并证明;

(Ⅱ)求所在平面构成的锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点及椭圆过点的动直线与椭圆相交于 两点.

1)若线段中点的横坐标是求直线的方程;

(2)设点的坐标为求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴,焦距为2,且长轴长是短轴长的倍.

1)求椭圆的标准方程;

2)设,过椭圆左焦点的直线两点,若对满足条件的任意直线,不等式)恒成立,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某赛季甲、乙两名篮球运动员参加的每场比赛得分的茎叶图,由甲、乙两人这几场比赛得分的中位数之和是(
A.65
B.64
C.63
D.62

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

,求函数的极值;

设函数,求函数的单调区间;

若在区间不存在,使得成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案