精英家教网 > 高中数学 > 题目详情

【题目】已知定点及椭圆过点的动直线与椭圆相交于 两点.

1)若线段中点的横坐标是求直线的方程;

(2)设点的坐标为求证: 为定值.

【答案】(1);(2

【解析】试题分析:(1)将直线的点斜式方程(其中斜率为参数)代入椭圆方程,并设出交点A,B的坐标,消去Y后,可得一个关于X的一元二次方程,然后根据韦达定理(一元二次方程根与系数关系)易得A、B两点中点的坐标表达式,再由AB中点的横坐标是,,构造方程,即可求出直线的斜率,进而得到直线的方程.(2)由M点的坐标,我们易给出两个向量的坐标,然后代入平面向量数量集公式,结合韦达定理(一元二次方程根与系数关系),不难不求出的值.

试题解析:

(Ⅰ)依题意,直线的斜率存在,设直线的方程为

代入,消去整理得

由线段中点的横坐标是

解得,适合().

所以直线的方程为,或

()当直线轴不垂直时,

由(I)知 .(),

所以

将()代入,整理得:

当直线轴垂直时,

此时点 的坐标分别为

此时亦有

综上,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,五面体中,四边形是菱形, 是边长为2的正三角形,

(1)证明:

(2)若在平面内的正投影为,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=3sin(2x+ )的图象为C,关于函数f(x)及其图象的判断如下: ①图象C关于点( ,0)对称;
②图象C关于直线x= 对称;
③由图象C向右平移 个单位长度可以得到y=3sin2x的图象;
④函数f(x)在区间(﹣ )内是减函数;
⑤函数|f(x)+1|的最小正周期为
其中正确的结论序号是 . (把你认为正确的结论序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆经过不同的三点在第三象限),线段的中点在直线上.

(Ⅰ)求椭圆的方程及点的坐标;

(Ⅱ)设点是椭圆上的动点(异于点且直线分别交直线两点,问是否为定值?若是,求出定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三角形ABC中,分别根据下列条件解三角形,其中有两个解的是(
A.a=8b=16A=30°
B.a=25b=30A=150°
C.a=30b=40A=30°
D.a=72b=60A=135°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修44:坐标系与参数方程

在平面直角坐标系中,圆C的参数方程为,(t为参数),在以原点O为极点,x轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为AB两点的极坐标分别为.

()求圆C的普通方程和直线的直角坐标方程;

()P是圆C上任一点,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱中,侧面为矩形, 的中点, 交于点 侧面.

(1)证明:

(2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中, 在线段上运动且不与 重合,给出下列结论:

平面

二面角的大小随点的运动而变化;

三棱锥在平面上的投影的面积与在平面上的投影的面积之比随点的运动而变化;

其中正确的是(

A. ①③④ B. ①③

C. ①②④ D. ①②

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿场售价与上市时间的关系如图一的一条折线表示;西红柿的种植成本与上市时间的关系如图二的抛物线段表示.
(1)写出图一表示的市场售价与时间的函数关系式p=f(t);写出图二表示的种植成本与时间的函数关系式Q=g(t);
(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价各种植成本的单位:元/102㎏,时间单位:天)

查看答案和解析>>

同步练习册答案