精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=x3+x+a是奇函数,则实数a=0.

分析 利用R上的奇函数,满足f(0)=0建立方程,即可得到结论

解答 解:∵函数f(x)=x3+x+a是R上的奇函数,
∴f(0)=0,
∴a=0,
故答案为:0.

点评 本题考查函数奇偶性,考查学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.若实数a,b满足a2+b2+4=4a+4b-2ab,则(10ab有最大值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知A={x|-2<x<1或x>4},B={x|a≤x≤b},A∪B={x|x>-2},A∩B={x|0≤x<1},求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求过点(2,-3),倾斜角的余弦为$\frac{3}{5}$的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知集合{x∈R|x2+αx+b=0,α,b∈R}=∅,则α、b应满足条件a2-4b<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知公比为q(q≠1),的等比数列{an}的前n项和为Sn,则数列{$\frac{1}{{a}_{n}}$}的前n项和为(  )
A.$\frac{{q}^{n}}{{S}_{n}}$B.$\frac{{S}_{n}}{{q}^{n}}$C.$\frac{1}{{S}_{n}{q}^{n-1}}$D.$\frac{{S}_{n}}{{a}_{{1}^{2}}{q}^{n-1}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知等比数列{xn}的各项为不等于1的正数,数列{yn}满足$\frac{{y}_{n}}{lo{g}_{a}{x}_{n}}$=2(a>0,a≠1).设y3=18,y6=12.
(1)证明{yn}为等差数列;
(2)求数列{yn}的前n项和的最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知物体在力$\overrightarrow{{f}_{1}}$和$\overrightarrow{{f}_{2}}$的作用下,从A(3,-5)移动到B(-1,2),若$\overrightarrow{{f}_{1}}$=2$\overrightarrow{i}$-3$\overrightarrow{j}$,$\overrightarrow{{f}_{2}}$=$\overrightarrow{i}$+7$\overrightarrow{j}$,则合力$\overrightarrow{f}$对物体所作的功W=16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若a>b>0,则a2+$\frac{1}{b(a-b)}$的最小值为(  )
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案