精英家教网 > 高中数学 > 题目详情
20.已知各项不为0的等差数列{an}满足a3-a72+a11=0,数列{bn}是等比数列,且b7=a7,则b5•b7•b9等于(  )
A.1B.2C.4D.8

分析 由已知a3-a72+a11=0结合等差数列的性质求得a7,得到b7,再由等比数列的性质求得a5•b7•b9

解答 解:在等差数列{an}中,由a3-a72+a11=0,得$2{a}_{7}-{{a}_{7}}^{2}=0$,
∵an≠0,∴a7=2.
∴b7=a7=2,
在等比数列{bn}中,有b5•b7•b9 =${{b}_{7}}^{3}={2}^{3}=8$.
故选:D.

点评 本题考查等差数列的通项公式,考查了等比数列的性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知圆C:(x-a)2+y2=1(a>0),过直线l:2x+2y+3=0上任意一点P作圆C的两条切线PA,PB,切点分别为A,B,若∠APB为锐角,则a的取值范围为($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.噪声污染已经成为影响人们身体健康和生活质量的严重问题,为了解强度D(单位:分贝)与声音能量I(单位:W/cm2)之间的关系,将测量得到的声音强度Di和声音能量Ii(i=1,2…,10)数据作了初步处理,得到如表的散点图及一些统计量的值.
 $\overline{I}$ $\overline{D}$ $\overline{W}$ $\underset{\stackrel{10}{∑}}{i=1}({I}_{i}-\overline{I})^{2}$ $\underset{\stackrel{10}{∑}}{i=1}({W}_{i}-\overline{W})^{2}$ $\underset{\stackrel{10}{∑}}{i=1}({I}_{i}-\overline{I})({D}_{i}-\overline{D})$ $\underset{\stackrel{10}{∑}}{i=1}({W}_{i}-\overline{W})({D}_{i}-\overline{D})$
1.04×10-1145.7-11.5 1.56×10-21 0.51 6.88×10-11 5.1
表中Wi=lgIi,$\overline{W}$=$\frac{1}{10}\underset{\stackrel{10}{∑}}{i=1}{W}_{i}$.
(Ⅰ)根据表中数据,求声音强度D关于声音能量I的回归方程D=a+blgI;
(Ⅱ)当声音强度大于60分贝时属于噪音,会产生噪声污染,城市中某点P共受到两个声源的影响,这两个声源的声音能量分别是I1和I2,且$\frac{1}{{I}_{1}}$+$\frac{4}{{I}_{2}}$=1010,已知点P的声音能量等于声音能量I1与I2之和,请根据(Ⅰ)中的回归方程,判断P点是否受到噪声污染的干扰,并说明理由.
附:对于一组数据(μ1,v1),(μ2,v2),…,(μn,vn),其回归直线v=α+βμ的斜率和截距的最小二乘估计分别为:$\widehat{β}$=$\frac{\underset{\stackrel{n}{∑}}{i=1}({μ}_{i}-\overline{μ})({v}_{i}-\overline{v})}{\underset{\stackrel{n}{∑}}{i=1}({μ}_{i}-\overline{μ})^{2}}$,$\widehat{α}$=$\overline{v}-\widehat{β}\overline{μ}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如果实数x,y满足条件$\left\{\begin{array}{l}{x-y≥0}\\{2x+y-2≥0}\\{x-1≤0}\end{array}\right.$,则z=$\frac{1}{y-2x}$的最大值为-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如果实数x,y满足条件$\left\{\begin{array}{l}{x-y≥0}\\{2x+y-2≥0}\\{x-1≤0}\end{array}\right.$,则z=y-2x的最小值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知O为坐标原点,A,B,C是圆O上的三点,若$\overrightarrow{AO}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),|$\overrightarrow{BC}$|=2,过点D(2,0)的直线l与圆O相切,则直线l的方程是x+$\sqrt{3}$y-2=0或x-$\sqrt{3}$y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,过焦点且垂直于x轴的直线被椭圆截得的弦长为$\sqrt{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l1经过椭圆C的上顶点P且与圆x2+y2=4交于A,B两点,过点P作l1的垂线l2交椭圆C于另一点D,当△ABD的面积取得最大值时,求直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=2x+x|x-a|.
(1)当a=1时,解不等式f(x)≥2;
(2)当x∈[1,2]时,不等式f(x)≤1+2x2恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=a-$\frac{1}{{{2^x}+1}}$.
(1)判断f(x)的单调性并用定义法证明;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

同步练习册答案