精英家教网 > 高中数学 > 题目详情
15.如果实数x,y满足条件$\left\{\begin{array}{l}{x-y≥0}\\{2x+y-2≥0}\\{x-1≤0}\end{array}\right.$,则z=y-2x的最小值为-2.

分析 作出不等式组对应的平面区域,利用数形结合即可得到结论.

解答 解:由z=y-2x,则y=2x+z
作出不等式组对应的平面区域如图:
平移直线y=2x+z,由图象知当直线y=2x+z,经过点A时,直线y=2x+z的截距最大,此时m最大,
当直线y=2x+z经过点B时,直线y=2x+z的截距最小,
此时z最小,
由$\left\{\begin{array}{l}{x-1=0}\\{2x+y-2=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=1}\\{y=0}\end{array}\right.$,即B(1,0),
此时z=0-2=-2,
即z=y-2x的最小值-2,
故答案为:-2

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.如图所示的程序框图的算法思路源于我国古代数字著作《数书九章》,称为“秦九韶算法”.执行该程序框图,若输入x=2,n=5,则输出的v=(  )
A.26B.48C.57D.64

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数f(x)=2sin(ωx-$\frac{π}{3}$)(0<ω<2π)的图象关于直线x=m对称,且f(1)=1,则m的值不可能为(  )
A.$\frac{5}{7}$B.$\frac{5}{3}$C.$\frac{11}{7}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知复数z满足(z+3i)(2-i3)=10i5,则复数z在复平面上对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|-1<x<2},B={x|x>log2m},若A⊆B,则实数m的取值范围是(  )
A.(0,4]B.($\frac{1}{2}$,1]C.(0,$\frac{1}{2}$]D.(-∞,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知各项不为0的等差数列{an}满足a3-a72+a11=0,数列{bn}是等比数列,且b7=a7,则b5•b7•b9等于(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|log2x≥1},B={x|x2-x-6<0},则(∁RA)∩B等于(  )
A.{x|-2<x<1}B.{x|-2<x<2}C.{x|2≤x<3}D.{x|x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=2cos(ωx-φ)(ω>0,φ∈[0,π]的部分图象如图所示,若A($\frac{π}{2}$,$\sqrt{2}$),B($\frac{3π}{2}$,$\sqrt{2}$),则函数f(x)的单调增区间为(  )
A.[-$\frac{π}{4}$+2kπ,$\frac{3π}{4}$+2kπ](k∈Z)B.[$\frac{3π}{4}$+2kπ,$\frac{7π}{4}$+2kπ](k∈Z)
C.[-$\frac{π}{8}$+kπ,$\frac{3π}{8}$+kπ](k∈Z)D.[$\frac{3π}{8}$+kπ,$\frac{7π}{8}$+kπ](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2$\sqrt{3}$cosωxcos(ωx+$\frac{π}{2}$)+2sin2ωx(ω>0)的最小正周期为π.
(Ⅰ)求ω的值和函数f(x)的单调增区间;
(Ⅱ)求函数f(x)在区间$[{\frac{π}{3},π}]$上的取值范围.

查看答案和解析>>

同步练习册答案