| A. | $\frac{5}{7}$ | B. | $\frac{5}{3}$ | C. | $\frac{11}{7}$ | D. | $\frac{8}{3}$ |
分析 由条件利用正弦函数的图象的对称性求得函数的图象的对称轴方程,从而得出结论.
解答 解:函数f(x)=2sin(ωx-$\frac{π}{3}$)(0<ω<2π)满足f(1)=1,
则2sin(ω-$\frac{π}{3}$)=1,
∴sin(ω-$\frac{π}{3}$)=$\frac{1}{2}$,∴ω-$\frac{π}{3}$=2kπ+$\frac{π}{6}$ 或ω-$\frac{π}{3}$=2kπ+$\frac{5π}{6}$,k∈Z.
∴ω=$\frac{π}{2}$ 或$\frac{7π}{6}$,
∴f(x)=2sin($\frac{π}{2}$x-$\frac{π}{3}$),或f(x)=2sin($\frac{7π}{6}$x-$\frac{π}{3}$),
令 $\frac{π}{2}$x-$\frac{π}{3}$=kπ+$\frac{π}{2}$,求得x=2k+$\frac{5}{3}$,故它的图象的对称轴方程为x=2k+$\frac{5}{3}$,k∈Z.
令 $\frac{7π}{6}$x-$\frac{π}{3}$=kπ+$\frac{π}{2}$,求得x=$\frac{5}{7}$+$\frac{6}{7}$k,
故它的图象的对称轴方程为x=$\frac{5}{7}$+$\frac{6}{7}$k,k∈Z,
则m的值不可能是$\frac{8}{3}$,
故选:D.
点评 本题主要考查正弦函数的图象的对称性,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | (1,+∞) | B. | (1,$\sqrt{2}$) | C. | ($\sqrt{2}$,+∞) | D. | (0,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 相交且垂直 | B. | 异面且垂直 | C. | 相交且不垂直 | D. | 异面且不垂直 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| $\overline{I}$ | $\overline{D}$ | $\overline{W}$ | $\underset{\stackrel{10}{∑}}{i=1}({I}_{i}-\overline{I})^{2}$ | $\underset{\stackrel{10}{∑}}{i=1}({W}_{i}-\overline{W})^{2}$ | $\underset{\stackrel{10}{∑}}{i=1}({I}_{i}-\overline{I})({D}_{i}-\overline{D})$ | $\underset{\stackrel{10}{∑}}{i=1}({W}_{i}-\overline{W})({D}_{i}-\overline{D})$ |
| 1.04×10-11 | 45.7 | -11.5 | 1.56×10-21 | 0.51 | 6.88×10-11 | 5.1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com