精英家教网 > 高中数学 > 题目详情
18.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的半焦距为c,原点到直线l:ax+by=ab的距离等于$\frac{1}{3}$c+1,则c的最小值为6.

分析 先根据点到直线的距离求得知$\frac{ab}{\sqrt{{a}^{2}+{b}^{2}}}$=$\frac{ab}{c}$=$\frac{1}{3}$c+1,进而根据均值不等式的性质求得ab≤$\frac{{a}^{2}+{b}^{2}}{2}$=$\frac{{c}^{2}}{2}$,建立不等式关系进行求解即可求得c的范围.

解答 解:原点到直线l:ax+by=ab的距离d=$\frac{ab}{\sqrt{{a}^{2}+{b}^{2}}}$=$\frac{ab}{c}$=$\frac{1}{3}$c+1,
∴ab=$\frac{1}{3}$c2+c
∵ab≤$\frac{{a}^{2}+{b}^{2}}{2}$=$\frac{{c}^{2}}{2}$
∴$\frac{1}{3}$c2+c≤$\frac{{c}^{2}}{2}$,
即c2-6c≥0,解得c≥6或c≤0(舍去),
即c的最小值为6
故答案为:6

点评 本题主要考查了直线与圆锥曲线的综合问题.解题的关键是利用点到直线的距离求得a,b和c的关系,结合基本不等式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.命题p:a<b,则ac2<bc2;命题q:“x=$\frac{π}{4}$”是“tanx=1”的充分不必要条件,则下列命题为真命题的是(  )
A.p∧qB.p∨(¬q)C.(¬p)∧qD.(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知正项等比数列{an}的前n项和为Sn,a2+a3=6a1,则$\frac{{S}_{6}}{{S}_{3}}$等于(  )
A.5B.6C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数f(x)=2sin(ωx-$\frac{π}{3}$)(0<ω<2π)的图象关于直线x=m对称,且f(1)=1,则m的值不可能为(  )
A.$\frac{5}{7}$B.$\frac{5}{3}$C.$\frac{11}{7}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.解释变量x与预报变量y的一组样本数据统计如表:
 x 2 3 4 5 6 7
 y 73 72 7173 69 68 
(1)根据表中数据作出散点图,试确定回归方程;
(2)假定解释变量为6时,预报变量是多少?预报变量为70时,解释变量应为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知复数z满足(z+3i)(2-i3)=10i5,则复数z在复平面上对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|-1<x<2},B={x|x>log2m},若A⊆B,则实数m的取值范围是(  )
A.(0,4]B.($\frac{1}{2}$,1]C.(0,$\frac{1}{2}$]D.(-∞,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|log2x≥1},B={x|x2-x-6<0},则(∁RA)∩B等于(  )
A.{x|-2<x<1}B.{x|-2<x<2}C.{x|2≤x<3}D.{x|x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.直线y=$\sqrt{3}$x+1被圆x2+y2-8x-2y+1=0所截得的弦长等于4.

查看答案和解析>>

同步练习册答案