精英家教网 > 高中数学 > 题目详情
7.已知集合A={x|log2x≥1},B={x|x2-x-6<0},则(∁RA)∩B等于(  )
A.{x|-2<x<1}B.{x|-2<x<2}C.{x|2≤x<3}D.{x|x<2}

分析 求出集合A、B,从而求出集合A的补集,得到其和B的交集即可.

解答 解:∵A={x|log2x≥1}={x|x≥2},
B={x|x2-x-6<0}={x|-2<x<3},
∴∁RA={x|x<2},
∴(∁RA)∩B{x|-2<x<2},
故选:B.

点评 本题考查了集合的运算,考查解不等式问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率的取值范围是(  )
A.(1,+∞)B.(1,$\sqrt{2}$)C.($\sqrt{2}$,+∞)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的半焦距为c,原点到直线l:ax+by=ab的距离等于$\frac{1}{3}$c+1,则c的最小值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如果实数x,y满足条件$\left\{\begin{array}{l}{x-y≥0}\\{2x+y-2≥0}\\{x-1≤0}\end{array}\right.$,则z=y-2x的最小值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知cosα=$\frac{1}{5}$,则cos(2α-2017π)=$\frac{23}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,过焦点且垂直于x轴的直线被椭圆截得的弦长为$\sqrt{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l1经过椭圆C的上顶点P且与圆x2+y2=4交于A,B两点,过点P作l1的垂线l2交椭圆C于另一点D,当△ABD的面积取得最大值时,求直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知复数z1=a-i(a∈R),z2=-1+i,若z1•z2为纯虚数,则a等于(  )
A.0B.1C.2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且椭圆上一点与椭圆的两个焦点构成的三角形周长为4+2$\sqrt{3}$.
(1)求椭圆C的标准方程;
(2)设不过原点O的直线l与该椭圆交于P,Q两点,满足直线OP,PQ,OQ的斜率依次成等比数列,求△OPQ面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知向量$\overrightarrow{m}$=($\sqrt{3}$sinωx,cosωx-$\frac{\sqrt{2}}{2}$),$\overrightarrow{n}$=(cosωx,cosωx+$\frac{\sqrt{2}}{2}$)(ω>0),若f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,且f(x)的图象上两相邻对称轴间的距离为$\frac{π}{2}$.
(Ⅰ)求f(x)的单调递减区间;
(Ⅱ)设△ABC的内角A,B,C的对边分别为a,b,c,且满足c=$\sqrt{3}$,f(C)=$\frac{1}{2}$,b=2a,求a,b的值.

查看答案和解析>>

同步练习册答案