精英家教网 > 高中数学 > 题目详情
8.命题p:a<b,则ac2<bc2;命题q:“x=$\frac{π}{4}$”是“tanx=1”的充分不必要条件,则下列命题为真命题的是(  )
A.p∧qB.p∨(¬q)C.(¬p)∧qD.(¬p)∧(¬q)

分析 命题p:c=0时不成立,即可判断出真假.命题q:利用正切函数的性质、充要条件的判定方法即可判断出真假.再利用复合命题真假的判定方法即可得出.

解答 解:命题p:a<b,则ac2<bc2,c=0时不成立,因此是假命题.
命题q:“x=$\frac{π}{4}$”是“tanx=1”的充分不必要条件,是真命题.
∴下列命题为真命题的是(¬P)∧q.
故选:C.

点评 本题考查了不等式的性质、正切函数的性质、复合命题真假的判定方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.某几何体的三视图(单位:cm)如图所示,则该几何体的表面积是$12+4\sqrt{2}$cm2,体积是4cm3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.点P是在△ABC所在平面上一点,若$\overrightarrow{PA}$•$\overrightarrow{PB}$=$\overrightarrow{PB}$•$\overrightarrow{PC}$=$\overrightarrow{PC}$•$\overrightarrow{PA}$,AB=2,AC=3,∠A=60°.存在实数λ,μ,使$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,则(  )
A.λ=$\frac{2}{3}$,μ=$\frac{1}{9}$B.λ=$\frac{1}{3}$,μ=$\frac{2}{9}$C.λ=$\frac{2}{3}$,μ=$\frac{1}{3}$D.λ=$\frac{2}{3}$,μ=$\frac{2}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若m+2n=1(m>0,n>0),则$\frac{1}{2m}$+$\frac{1}{n}$的最小值为$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,c=2,acosC=csinA,若当a=x0时的△ABC有两解,则x0的取值范围是(2,2$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{m\sqrt{x}+lnx}{x}$(x>0),m∈R.
(1)若函数f(x)有零点,求实数m的取值范围;
(2)若函数f(x)的图象在点(1,f(x))处的切线的斜率为$\frac{1}{2}$,且函数f(x)的最大值为M,求证:1<M<$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}和{bn}满足a1a2…an=($\sqrt{2}$)${\;}^{{b}_{n}}$,n∈N*,若{an}为等比数列,且a1=2,b3=6+b2
(Ⅰ)求a3及数列{bn}的通项公式;
(Ⅱ)设cn=$\frac{1}{{a}_{n}}$-$\frac{1}{{b}_{n}}$,n∈N*,记数列{cn}的前n项和为Sn
(i)求Sn
(ii)若Sk≥Sn恒成立,求正整数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率的取值范围是(  )
A.(1,+∞)B.(1,$\sqrt{2}$)C.($\sqrt{2}$,+∞)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的半焦距为c,原点到直线l:ax+by=ab的距离等于$\frac{1}{3}$c+1,则c的最小值为6.

查看答案和解析>>

同步练习册答案