精英家教网 > 高中数学 > 题目详情
14.若函数f(x)在区间[-2,2]上的图象是一条连续不断的曲线,且函数f(x)在(-2,2)上仅有一个零点,则f(-2)•f(2)的符号是(  )
A.小于零B.大于零C.小于或大于零D.不能确定

分析 由题意举例f(x)=x,f(x)=x2,f(x)=sin($\frac{π}{2}$x),从而解得.

解答 解:当f(x)=x时,f(-2)•f(2)<0,
当f(x)=x2时,f(-2)•f(2)>0,
当f(x)=sin($\frac{π}{2}$x)时,f(-2)•f(2)=0,
故选:D.

点评 本题考查了函数的零点的判定定理的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=$\frac{{4}^{x}}{2+{4}^{x}}$,
(1)证明:函数f(x)是R上的增函数;
(2)证明:对任意的实数t,都有f(t)+f(1-t)=1;
(3)求值:$f(\frac{1}{2015})+f(\frac{2}{2015})+f(\frac{3}{2015})+…+f(\frac{2013}{2015})+f(\frac{2014}{2015})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)的定义域为[3,6],则函数$y=\frac{f(2x)}{{\sqrt{{{log}_{\frac{1}{2}}}(2-x)}}}$的定义域为[$\frac{3}{2},2$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某自来水厂蓄水池中有400吨的水,水厂每小时向蓄水池注入m吨水(m>0),同时蓄水池又向居民小区供水,t小时内,供水量为120$\sqrt{6t}$吨.设t小时后水池的水量为S.
(1)写出S与t的关系式;
(2)当m=80时,多少小时后蓄水池的水量最少.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)是定义(-∞,0)∪(0,+∞)上的函数,且满足关系式3f(x)+2f($\frac{1}{x}$)=4x,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.下列说法正确的有①⑤.
①函数y=x2-2|x|+1的递减的区间是(-∞,-1]和[0,1];
②函数y=$\frac{3-5x}{4x+1}$的值域是(-∞,$\frac{3}{4}$)∪($\frac{3}{4}$,+∞);
③函数f(x)=$\frac{1}{{x}^{2}-3x+2}$+$\sqrt{x-1}$的定义域是{x|x≥1,且x≠2};
④若函数f(x)=$\frac{(x+1)(x+a)}{x}$为奇函数,则a=1;
⑤已知二次函数f(x)满足f(2+x)=f(2-x)(x∈R),且f(x)在(2,+∞)上是减函数,则f(-$\sqrt{2}$)<f(5)<f($\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设α∈(0,$\frac{π}{4}$),则a=tan(sinα),b=tan(cosα)的大小关系是(  )
A.a<bB.b<a
C.a=bD.不能确定,由α具体求值决定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)在(-1,1)上有定义,f($\frac{1}{2}$)=-1,且满足对于任意的x,y∈(-1,1),都有f(x)+f(y)=f($\frac{x+y}{1+xy}$),证明:f($\frac{4}{5}$)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.不等式|x一2|≤5的解集为(  )
A.[-5,5]B.(-2,5)C.[-3,7]D.R

查看答案和解析>>

同步练习册答案