精英家教网 > 高中数学 > 题目详情
(2009•浦东新区二模)一位同学对三元一次方程组
a1x+b1y+c1z=d1
a2x+b2y+c2z=d2
a3x+b3y+c3z=d3
(其中实系数ai,bi,ci(i=1,2,3)不全为零)的解的情况进行研究后得到下列结论:
结论1:当D=0,且Dx=Dy=Dz=0时,方程组有无穷多解;
结论2:当D=0,且Dx,Dy,Dz都不为零时,方程组有无穷多解;
结论3:当D=0,且Dx=Dy=Dz=0时,方程组无解.
但是上述结论均不正确.下面给出的方程组可以作为结论1、2和3的反例依次为(  )
(1)
x+2y+3z=0
x+2y+3z=1
x+2y+3z=2
;  (2)
x+2y=0
x+2y+z=0
2x+4y=0
;  (3)
2x+y=1
-x+2y+z=0
x+3y+z=2
分析:根据所给的三个方程组,解方程组看一些方程组的解的情况,用方程组结合所给的三个结论,根据D,Dx,Dy,Dz时的值与0的关系,确定结论错误找出正确顺序.
解答:解:看x,y,z的三元一次方程组
x+2y+3z=0
x+2y+3z=1
x+2y+3z=2

满足D=0,且Dx=Dy=Dz=0,
但是这个三元一次方程组无解,
方程组
x+2y=0
x+2y+z=0
2x+4y=0
满足D=0,且Dx=Dy=Dz=0,
这个方程组有无穷组解,而不是无解.
方程组
2x+y=1
-x+2y+z=0
x+3y+z=2
满足当D=0,且Dx,Dy,Dz都不为零,
但是方程组有唯一解,
∴方程组可以作为结论1、2和3的反例依次为(1)(3)(2)
故选B.
点评:本题的实质是考查三元一次方程组的解法,本题解题的关键是把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•浦东新区一模)如图:某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(Rt△FHE,H是直角顶点)来处理污水,管道越短,铺设管道的成本越低.设计要求管道的接口H是AB的中点,E,F分别落在线段BC,AD上.已知AB=20米,AD=10
3
米,记∠BHE=θ.
(1)试将污水净化管道的长度L表示为θ的函数,并写出定义域;
(2)若sinθ+cosθ=
3
+1
2
,求此时管道的长度L;
(3)问:当θ取何值时,铺设管道的成本最低?并求出此时管道的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•浦东新区一模)已知数列{an}是等比数列,其前n项和为Sn,若S2=12,S3=a1-6,则
limn→∞
Sn
=
16
16

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•浦东新区一模)函数y=2sin2x的最小正周期为
π
π

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•浦东新区一模)对于函数f1(x),f2(x),h(x),如果存在实数a,b使得h(x)=a•f1(x)+b•f2(x),那么称h(x)为f1(x),f2(x)的生成函数.
(1)下面给出两组函数,h(x)是否分别为f1(x),f2(x)的生成函数?并说明理由.
第一组:f1(x)=sinx,f2(x)=cosx,h(x)=sin(x+
π
3
)

第二组:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1.
(2)设f1(x)=log2x,f2(x)=log
1
2
x,a=2,b=1
,生成函数h(x).若不等式h(4x)+t•h(2x)<0在x∈[2,4]上有解,求实数t的取值范围.
(3)设f1(x)=x(x>0),f2(x)=
1
x
(x>0)
,取a>0,b>0生成函数h(x)图象的最低点坐标为(2,8).若对于任意正实数x1,x2且x1+x2=1,试问是否存在最大的常数m,使h(x1)h(x2)≥m恒成立?如果存在,求出这个m的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•浦东新区二模)在△ABC中,A、B、C所对的边分别为a、b、c已知a=2
3
 , c=2
,且
.
sinCsinB0
0b-2c
cosA01
.
=0
,求△ABC的面积.

查看答案和解析>>

同步练习册答案