精英家教网 > 高中数学 > 题目详情
2.已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(1+x)=f(1-x),且方程f(x)=2x有两等根.
(1)求f(x)的解析式.
(2)求f(x)在[0,t]上的最大值.
(3)是否存在实数m、n(m<n),使f(x)的定义域和值域分别为[m,n]和[4m,4n],如果存在,求出m、n的值,如果不存在,说明理由.

分析 (1)根据判别式=0,求出b的值,再求出f(x)的对称轴,从而求出a的值,求出函数的表达式即可;
(2)结合函数的对称轴通过讨论t的范围,得到函数的单调区间,从而求出函数的最大值即可;
(3)根据函数的单调性得到关于m、n的方程组,求出m、n的值即可.

解答 解:(1)∵方程f(x)=2x有两等根,ax2+(b-2)x=0有两等根,
∴△=(b-2)2=0,解得b=2,
∵f(x-1)=f(3-x),∴x=1是函数的对称轴,
又此函数图象的对称轴是直线x=-$\frac{b}{2a}$,∴-$\frac{b}{2a}$=1,∴a=-1,
故f(x)=-x2+2x;
(2)∵函数f(x)=-x2+2x对称轴为x=1,x∈[0,t],
∴当t≤1时,f(x)在[0,t]上是增函数,∴f(x)max=-t2+2t,
当t>1时,f(x)在[0,1]上是增函数,在[1,t]上是减函数,∴f(a)max=f(1)=1,
综上,f(x)max=$\left\{\begin{array}{l}{1,t>1}\\{-{t}^{2}+2t,t≤1}\end{array}\right.$.
(3)∵f(x)=-(x-1)2+1≤1,∴4n≤1,即n≤$\frac{1}{4}$.
而抛物线y=-x2+2x的对称轴为x=1,∴当n≤$\frac{1}{4}$时,f(x)在[m,n]上为增函数.
若满足题设条件的m,n存在,则$\left\{\begin{array}{l}{f(m)=4m}\\{f(n)=4n}\end{array}\right.$,
即$\left\{\begin{array}{l}{-{m}^{2}+2m=4m}\\{-{n}^{2}+2n=4n}\end{array}\right.$⇒$\left\{\begin{array}{l}{m=0或m=-2}\\{n=0或n=-2}\end{array}\right.$,又m<n≤$\frac{1}{4}$.
∴m=-2,n=0,这时,定义域为[-2,0],值域为[-8,0].
由以上知满足条件的m,n存在,m=-2,n=0.

点评 本题考察了二次函数的性质,考察函数的单调性最值问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知:$f(x)=|{2x-\frac{3}{4}}|-|{2x+\frac{5}{4}}|$
(1)关于x的不等式f(x)≥a2-3a恒成立,求实数a的取值范围;
(2)若f(m)+f(n)=4,且m<n,求m+n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=|x2-2x|,设关于x的方程f[f(x)]=a(a∈R)的实数根的个数为g(a),有下列五个命题:
①g(0)=4;
②g(1)=6;
③当a<0时,g(a)=0;
④当0<a<1时,g(a)=8;
⑤当a>1时,g(a)=3.
其中正确的有①③④(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2sin(2x+$\frac{π}{6}$)-1
(1)求函数f(x)的最大值和最小值及取得最大、最小值时的自变量x的集合;
(2)当x∈[-π,π]时,求函数f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=sin($\frac{π}{4}$-2x)
(1)求f(x)的最小正周期T;
(2)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.命题“若x<0,则x<1”的否命题是(  )
A.若x<0,则x≥1B.若x<1,则x<0C.若x≥1,则 x≥0D.若x≥0,则 x≥1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.复数$\frac{2+i}{1-2i}$等于(  )
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=log0.5(x2-4)的单调减区间为(  )
A.(-∞,0)B.(0,+∞)C.(-∞,-2)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=sin(x+$\frac{π}{6}$)+sin(x-$\frac{π}{6}$)+cosx+a的最大值为1.
(1)求常数a的值;
(2)求f(x)的单调递增区间;
(3)求f(x)≥0成立的x的取值集合.

查看答案和解析>>

同步练习册答案