精英家教网 > 高中数学 > 题目详情
(2012•长春模拟)圆x2+y2=8内有一点P(-1,2),AB为过点P但不与x轴垂直的弦,O为坐标原点.则
OA
OB
的取值范围
[-8,2]
[-8,2]
分析:设直线AB方程为y-2=k(x+1),将它与圆方程消去y得关于x的方程,由一元二次方程根与系数关系得x1+x2=-
2k2+4k
1+k2
,x1x2=
k2+4k-4
1+k2
,再结合直线方程算出y1y2=
-7k2+4k+4
1+k2
.由此得到
OA
OB
=x1x2+y1y2=-6+
  8k+6
1+k2
,利用导数工具讨论关于k的函数的单调性与最值,即可得到
OA
OB
的取值范围.
解答:解:设直线AB的斜率为k,则直线AB的方程为y-2=k(x+1).
设A(x1,y1),B(x2,y2),则由
y-2=k(x+1)
x2+y2=8
消去y,
得(1+k2)x2+(2k2+4k)x+k2+4k-4=0
∴x1+x2=-
2k2+4k
1+k2
,x1x2=
k2+4k-4
1+k2

可得y1y2=[k(x1+1)+2][k(x2+1)+2]=k2x1x2+(k+2)(x1+x2)+(k+2)2=
-7k2+4k+4
1+k2

从而有
OA
OB
=x1x2+y1y2=
k2+4k-4
1+k2
+
-7k2+4k+4
1+k2
=-6+
  8k+6
1+k2

设F(k)=
  8k+6
1+k2
,则F'(k)=
  8(1+k2)-2k(8+6k)
(1+k2)2
=-
  4(2k-1)(k+2)
(1+k2)2

∴当k<-2或k>
1
2
时,F'(k)<0;当-2<k<
1
2
时,F'(k)>0
函数F(k)在(-∞,-2)和(
1
2
,+∞)上是减函数,在(-2,
1
2
)上是增函数;
由此可得F(k)的最小值为它的极小值F(-2)=-2,最大值是它的极大值F(
1
2
)=8
OA
OB
=-6+
  8k+6
1+k2
的最小值为-8,最小值为2
OA
OB
的取值范围为[-8,2]
故答案为:[-8,2]
点评:本题在直线与圆相交的情况下,求数量积的取值范围,着重考查了直线与圆的位置关系和向量数量积的运算等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•长春模拟)设f(x)是定义在R上的增函数,且对于任意的x都有f(-x)+f(x)=0恒成立.如果实数m、n满足不等式f(m2-6m+21)+f(n2-8n)<0,那么m2+n2 的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•长春模拟)如图,在底面为直角梯形的四棱锥P-ABCD中AD∥BC,∠ABC=90°,PD⊥平面ABCD,AD=1,AB=
3
,BC=4.
(1)求证:BD⊥PC;
(2)当PD=1时,求此四棱锥的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•长春模拟)选修4-5;不等式选讲
已知函数f(x)=|2x-a|+a.
(1)若不等式f(x)≤6的解集为{x|-2≤x≤3},求实数a的值;
(2)在(1)的条件下,若存在实数n使f(n)≤m-f(-n)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•长春模拟)一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的体积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•长春模拟)已知数列{an}满足a1=1,an+1=2an+1(n∈N*).
(1)求证:数列{an+1}是等比数列,并写出数列{an}的通项公式;
(2)若数列{bn}满足4b1-14b2-14b3-14bn-1=(an+1)n,求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案