精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2-2acoskπ·lnx(k∈N*,a∈R,且a>0),
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若k=2010,关于x的方程f(x)=2ax有唯一解,求a的值.
解:(Ⅰ)由已知,得x>0且f′(x)=
当k是奇数时,则f′(x)>0,则f(x)在(0,+∞)上是增函数;
当k是偶数时,则f′(x)=
所以当x∈时,f′(x)<0,当x∈时,f′(x)>0,
故当k是偶数时,f(x)在上是减函数,在上是增函数.
(Ⅱ)若k=2010,则f(x)=x2-2alnx(k∈N*),
记g(x)=f(x)-2ax=x2-2alnx-20x,
g′(x)=
若方程f(x)=2ax有唯一解,即g(x)=0有唯一解;
令g′(x)=0,得x2-ax-a=0,
因为a>0,x>0,所以(舍去),
当x∈(0,x2)时,g′(x)<0,g(x)在(0,x2)是单调递减函数;
当x∈(x2,+∞)时,g′(x)>0,g(x)在(x2,+∞)上是单调递增函数.
当x=x2时,g′(x2)=0,g(x)min=g(x2).
因为g(x)=0有唯一解,所以g(x2)=0,
,即
两式相减,得2alnx2+ax2-a=0,
因为a>0,
∴2lnx2+x2-1=0, (*)
设函数h(x)=21nx+x-1,
因为在x>0时,h(x)是增函数,所以h(x)=0至多有一解,
因为h(1)=0,
所以方程(*)的解为x2=1,从而解得
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-2m2+m+3(m∈Z)为偶函数,且f(3)<f(5).
(1)求m的值,并确定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,请求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:浙江省东阳中学高三10月阶段性考试数学理科试题 题型:022

已知函数f(x)的图像在[a,b]上连续不断,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值,若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.已知函数f(x)=x2,x∈[-1,4]为[-1,4]上的“k阶收缩函数”,则k的值是_________.

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河南省许昌市长葛三高高三第七次考试数学试卷(理科)(解析版) 题型:选择题

已知函数f(x)、g(x),下列说法正确的是( )
A.f(x)是奇函数,g(x)是奇函数,则f(x)+g(x)是奇函数
B.f(x)是偶函数,g(x)是偶函数,则f(x)+g(x)是偶函数
C.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)一定是奇函数或偶函数
D.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)可以是奇函数或偶函数

查看答案和解析>>

同步练习册答案