精英家教网 > 高中数学 > 题目详情

【题目】

在平面直角坐标系中,椭圆的右焦点为

为常数),离心率等于0.8,过焦点、倾斜角为的直线交椭圆两点.

求椭圆的标准方程;

时,,求实数

试问的值是否与的大小无关,并证明你的结论.

【答案】123为定值

【解析】

试题(1)利用待定系数法可得,椭圆方程为

2)我们要知道=的条件应用,在于直线交椭圆两交点MN的横坐标为,这样代入椭圆方程,容易得到,从而解得

3) 需讨论斜率是否存在.一方面斜率不存在即=时,由(2)得;另一方面,当斜率存在即时,可设直线的斜率为,得直线MN,联立直线与椭圆方程,利用韦达定理和焦半径公式,就能得到,所以为定值,与直线的倾斜角的大小无关

试题解析:(1得:,椭圆方程为

2)当时,,得:

于是当=时,,于是

得到

3=时,由(2)知

时,设直线的斜率为则直线MN

联立椭圆方程有

=+==

综上,为定值,与直线的倾斜角的大小无关

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】 下列结论错误的是

A. 命题:“若,则”的逆否命题是“若,则

B. ”是“”的充分不必要条件

C. 命题:“ ”的否定是“

D. 若“”为假命题,则均为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线是曲线的切线.

1)求函数的解析式,

2)若,证明:对于任意有且仅有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,且椭圆上存在一点,满足.

(1)求椭圆的标准方程;

(2)过椭圆右焦点的直线与椭圆交于不同的两点,求的内切圆的半径的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,其中是数列的前项和.

1)若数列是首项为,公比为的等比数列,求数列的通项公式;

2)若,求数列的通项公式;

3)在(2)的条件下,设,求证:数列中的任意一项总可以表示成该数列其他两项之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线E1(a>0b>0)的右顶点为AO为坐标原点,MOA的中点,若以AM为直径的圆与E的渐近线相切,则双曲线E的离心率等于( )

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线为参数),曲线为参数).

(1)设相交于两点,求

(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线的距离的最大时,点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃B点表示四月的平均最低气温约为5℃下面叙述不正确的是 ( )

A. 各月的平均最低气温都在0℃以上

B. 七月的平均温差比一月的平均温差大

C. 三月和十一月的平均最高气温基本相同

D. 平均最高气温高于20℃的月份有5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知圆圆心为,过点且斜率为的直线与圆相交于不同的两点

)求的取值范围

)是否存在常数,使得向量共线?如果存在,求值;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案