精英家教网 > 高中数学 > 题目详情
5.函数f(x)=cos2x是(  )
A.周期为π的偶函数B.周期为π的奇函数
C.周期为2π的偶函数D.周期为2π的奇函数

分析 利用二倍角的余弦降幂变形,再由周期公式求得周期,由奇偶性的定义判断为偶函数.

解答 解:∵f(x)=cos2x=$\frac{1}{2}cos2x+\frac{1}{2}$.
∴函数f(x)=cos2x的周期T=$\frac{2π}{2}=π$;
又f(-x)=cos2(-x)=cos2x,
∴f(x)为偶函数,
∴f(x)是周期为π的偶函数.
故选:A.

点评 本题考查二倍角的余弦,考查余弦函数的图象和性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.求适合下列条件的圆锥曲线的标准方程并求出其离心率.
(1)焦点在x轴上,长轴长是10,短轴长8的椭圆方程;
(2)与椭圆$\frac{x^2}{27}+\frac{y^2}{36}=1$有相同焦点,且过点$(\sqrt{15},4)$的双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列推理合理的是(  )
A.f(x)是增函数,则f′(x)>0
B.因为a>b(a,b∈R),则a+2i>b+2i(i是虚数单位)
C.α,β是锐角△ABC的两个内角,则sin α>cos β
D.A是三角形ABC的内角,若cos A>0,则此三角形为锐角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.边长为$\sqrt{5}$的等边△ABC中,$\overrightarrow{AB}$•$\overrightarrow{BC}$等于(  )
A.$-\frac{5}{2}$B.$\frac{5}{2}$C.0D.$\frac{{5\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.${0.027^{-\frac{1}{3}}}$+$log_{25}^{\;}100$-$log_5^{\;}2$=$\frac{13}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若点P(2,-1)(直角坐标系下的坐标)为曲线ρ2-2ρcosθ-24=0(极坐标系下的方程)的弦的中点,则该弦所在直线的直角坐标方程为x-y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.实数x,y满足$\left\{{\begin{array}{l}{y≥1}\\{y≤2x-1}\\{x+y≤8}\end{array}}\right.$,则函数z=x+y+m的最小值为-2,则实数m为(  )
A.-4B.-3C.-2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是(  )
A.l1一定与l4垂直
B.l1一定与l4平行
C.l1一定与l4共面
D.l1与l4的位置关系可能是平行,相交,或异面

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.不等式2≥$\frac{1}{x-1}$的解集为(  )
A.(-$\frac{3}{2}$,1)B.(-∞,1)∪($\frac{3}{2}$,+∞)C.(1,$\frac{3}{2}$)D.(-∞,1)∪[$\frac{3}{2}$,+∞)

查看答案和解析>>

同步练习册答案