分析 (1)利用递推关系可得an;利用递推关系与等比数列的通项公式可得bn.
(2)利用“错位相减法”、等比数列的求和公式即可得出.
解答 解:(1)∵数列{an}的前n项和Sn=n2-n,
∴n=1时,a1=0;
n≥2时,an=Sn-Sn-1=n2-n-[(n-1)2-(n-1)]=2n-2,
n=1时也成立,
∴an=2n-2.
∵数列{bn}的前n项和Tn=4-bn,
∴n=1时,b1=4-b1,解得b1=2.
n≥2时,bn=Tn-Tn-1=4-bn-(4-bn-1),化为:bn=$\frac{1}{2}{b}_{n-1}$.
∴数列{bn}是等比数列,首项为2,公比为$\frac{1}{2}$.
∴bn=$2×(\frac{1}{2})^{n-1}$=$(\frac{1}{2})^{n-2}$.
(2)cn=$\frac{1}{2}$an•bn=$\frac{1}{2}×$(2n-2)×$(\frac{1}{2})^{n-2}$=(n-1)×$(\frac{1}{2})^{n-2}$.
∴数列{cn}的前n项和Rn=0+1+2×$\frac{1}{2}$+3×$(\frac{1}{2})^{2}$+…+(n-1)×$(\frac{1}{2})^{n-2}$.
$\frac{1}{2}{R}_{n}$=$\frac{1}{2}$+2×$(\frac{1}{2})^{2}$+…+(n-2)×$(\frac{1}{2})^{n-2}$+(n-1)×$(\frac{1}{2})^{n-1}$,
∴$\frac{1}{2}$Rn=1+$\frac{1}{2}+$$(\frac{1}{2})^{2}$+…+$(\frac{1}{2})^{n-2}$-(n-1)×$(\frac{1}{2})^{n-1}$=$\frac{1-(\frac{1}{2})^{n-1}}{1-\frac{1}{2}}$-(n-1)×$(\frac{1}{2})^{n-1}$=2-(n+1)×$(\frac{1}{2})^{n-1}$.
∴Rn=4-(n+1)×$(\frac{1}{2})^{n-2}$.
点评 本题考查了“错位相减法”、等比数列的通项公式与求和公式、递推关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$],k∈Z | B. | [2kπ+$\frac{π}{2}$,2kπ+$\frac{3π}{4}$],k∈Z | ||
| C. | [kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$],k∈Z | D. | [kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$],k∈Z |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3$\overrightarrow b$-$\overrightarrow c$ | B. | 3$\overrightarrow c$-2$\overrightarrow b$ | C. | 2$\overrightarrow b$+3$\overrightarrow c$ | D. | -2$\overrightarrow b$-3$\overrightarrow c$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{33}{65}$ | B. | $-\frac{63}{65}$ | C. | $\frac{33}{65}$ | D. | $\frac{16}{65}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{5}$ | B. | $\frac{1}{6}$ | C. | $\frac{1}{8}$ | D. | $\frac{3}{10}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com