精英家教网 > 高中数学 > 题目详情
13.计算:(log43+log89)(log32+log916)=$\frac{7}{2}$.

分析 利用对数的性质、运算法则和换底公式求解.

解答 解:(log43+log89)(log32+log916)
=(log6427+log6481)(log94+log916)
=$lo{g}_{64}{3}^{7}$•$lo{g}_{9}{4}^{3}$
=21•log643•log94
=21×$\frac{lg3}{lg64}×\frac{lg4}{lg9}$
=21×$\frac{1×1}{3×2}$
=$\frac{7}{2}$.

点评 本题考查对数式的化简、求值,是基础题,解题时要认真审题,注意对数的性质、运算法则和换底公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.若函数f(x)=2x-kx+1的一个零点是x0,则函数g(x)=4x-2kx+1的一个零点是$\frac{1}{2}$x0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.根据下列条件,求抛物线的标准方程:
(])焦点为F(3,0);
(2)焦点为F(0,-4);
(3)准线方程为x=$\frac{1}{4}$;
(4)准线方程为y=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x-m+3(m∈N)为偶函数且f(3)<f(5),求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.通过作图,找出与-170°终边相同的最小正角,并写出这些终边相同的角的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设△ABC的角A,B,C的对边分别为a,b,c,已知A,B,C成等差数列.
(1)若a,b,c成等比数列,求A,B,C;
(2)若$\overrightarrow{BA}•\overrightarrow{BC}=12$,b=2$\sqrt{7}$,求a,c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,过抛物线y2=x上一点A(4,2)作倾斜角互补的两条直线AB,AC,交抛物线于B,C两点,求证:直线BC的斜率是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.下列式子中:①lg(3+2$\sqrt{2}$)-lg(3-2$\sqrt{2}$)=0;
②lg(10+$\sqrt{99}$)•lg(10-$\sqrt{99}$)=0;
③log${\;}_{\sqrt{n+1}-\sqrt{n}}$($\sqrt{n+1}$+$\sqrt{n}$)=-1(n∈N*
④$\frac{lga}{lgb}$=lg(a-b).
其中正确的有③. (填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得$\sum_{i=1}^{10}{x_i}$=80,$\sum_{i=1}^{10}{y_i}$=20,$\sum_{i=1}^{10}{{x_i}{y_i}}$=184,$\sum_{i=1}^{10}{x_i^2}$=720.
(1)求家庭的月储蓄y对月收入x的线性回归方程y=bx+a;
(2)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.

查看答案和解析>>

同步练习册答案