精英家教网 > 高中数学 > 题目详情
当x满足log
12
(3-x)≥-2时,求:函数y=4-x-2-x+1的值域.
分析:先解不等式log
1
2
(3-x)≥-2得到x的范围,令t=2-x,y=4-x-2-x+1可变为t的二次函数,配方可求得最大值、最小值,从而可得值域,注意t的范围.
解答:解:∵log
1
2
(3-x)≥log
1
2
(
1
2
)-2

3-x>0
3-x≤4
,解得-1≤x<3,
2-x=t,
1
8
<t≤2
,则y=f(t)=t2-t+1=(t-
1
2
)2+
3
4

t=
1
2
时,ymin=
3
4
;t=2时,ymax=3;
∴值域[
3
4
,3]
点评:本题考查对数不等式的求解、二次函数的性质及其应用,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法:
①函数y=log
1
2
(x2-2x-3)
的单调增区间是(-∞,1);
②若函数y=f(x)定义域为R且满足f(1-x)=f(x+1),则它的图象关于y轴对称;
③对于指数函数y=2x与幂函数y=x2,总存在x0,当x>x0时,有2x>x2成立;
④若关于x的方程|x|(x+2)=m(m∈R)恰有三个互不相等的实数根x1,x2,x3,则x1+x2+x3的取值范围是(-2,
2
-3)

其中正确的说法是
③④
③④

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是实数集上的奇函数,且满足f(x+1)=-f(x),当x∈(0,1)时,f(x)=log
1
2
(1-x)
,则f(x)在(1,2)上是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知数列{an}满足a1=2,前n项和为Snan+1=
pan+n-1(n为奇数)
-an-2n(n为偶数)

(1)若数列{bn}满足bn=a2n+a2n+1(n≥1),试求数列{bn}前3项的和T3
(2)若数列{cn}满足cn=a2n,试判断{cn}是否为等比数列,并说明理由;
(3)当p=
1
2
时,对任意n∈N*,不等式S2n+1≤log
1
2
(x2+3x)
都成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)是实数集上的奇函数,且满足f(x+1)=-f(x),当x∈(0,1)时,f(x)=log
1
2
(1-x)
,则f(x)在(1,2)上是(  )
A.增函数且f(x)<0B.增函数且f(x)>0
C.减函数且f(x)<0D.减函数且f(x)>0

查看答案和解析>>

同步练习册答案