Èçͼ£¬ÍÖÔ²
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄÉÏ¡¢ÏÂÁ½¸ö¶¥µãΪA£¬B£¬Ö±Ïßl£ºy=-2£¬
µãPÊÇÍÖÔ²ÉÏÒìÓÚµãA¡¢BµÄÈÎÒâÒ»µã£¬Á¬½ÓAP²¢ÑÓ³¤½»Ö±ÏßlÓÚµãN£¬Á¬½ÓPB²¢ÑÓ³¤½»Ö±ÏßlÓÚµãM£¬ÉèAPËùÔÚµÄÖ±ÏßµÄбÂÊΪk1£¬BPËùÔÚµÄÖ±ÏßµÄбÂÊΪk2£¬ÈôÍÖÔ²µÄÀëÐÄÂÊΪ
3
2
£¬ÇÒ¹ýµãA£¨0£¬1£©£®
£¨1£©Çók1•k2µÄÖµ¼°Ïß¶ÎMNµÄ×îСֵ£»
£¨2£©Ëæ×ŵãPµÄ±ä»¯£¬ÒÔMNΪֱ¾¶µÄÔ²ÊÇ·ñºã¹ý¶¨µã£¿Èô¹ý¶¨µã£¬Çó³ö¸Ã¶¨µã£»Èç²»¹ý¶¨µã£¬Çë˵Ã÷ÀíÓÉ£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺¼ÆËãÌâ,Ö±ÏßÓëÔ²,Ô²×¶ÇúÏߵ͍Òå¡¢ÐÔÖÊÓë·½³Ì
·ÖÎö£º£¨1£©ÓÉÌâÒâ¿ÉÖªe=
c
a
=
3
2
£¬b=1£¬ÓÖa2-b2=c2£¬½â³öa£¬bµÃµ½ÍÖÔ²·½³Ì£¬ÉèÍÖÔ²ÉϵãP£¨x0£¬y0£©£¬´úÈëÍÖÔ²·½³Ì£¬ÔÙÓÉбÂʹ«Ê½£¬¼´¿ÉµÃµ½k1•k2µÄÖµ£¬ÉèM£¨x1£¬-2£©£¬N£¨x2£¬-2£©£¬Çó³öx1x2=-12£¬ÔÙÓÉ»ù±¾²»µÈʽÇó³öMN=|x1-x2|µÄ×îСֵ£»
£¨2£©ÉèM£¨x1£¬-2£©£¬N£¨x2£¬-2£©£¬ÔòÒÔMNΪֱ¾¶µÄÔ²µÄ·½³ÌΪ£¨x-x1£©£¨x-x2£©+£¨y+2£©2=0£¬»¯¼òÕûÀí£¬ÈôÔ²¹ý¶¨µã£¬ÔòÓÐx=0£¬x2+£¨y+2£©2-12=0£¬½â³ö¼´¿ÉÅжϣ®
½â´ð£º ½â£º£¨1£©ÒòΪe=
c
a
=
3
2
£¬b=1£¬ÓÖa2-b2=c2£¬½âµÃa=2£¬
ËùÒÔÍÖÔ²CµÄ±ê×¼·½³ÌΪ
x2
4
+y2=1£®
ÉèÍÖÔ²ÉϵãP£¨x0£¬y0£©£¬ÓÐ
x02
4
+y02=1£¬
ËùÒÔk1•k2=
y0-1
x0
y0+1
x0
=
y02-1
x02
=-
1
4
£®
ÒòΪM£¬NÔÚÖ±Ïßl£ºy=-2ÉÏ£¬ÉèM£¨x1£¬-2£©£¬N£¨x2£¬-2£©£¬
ÓÉ·½³ÌÖª
x2
4
+y2=1Öª£¬A£¨0£¬1£©£¬B£¨0£¬-1£©£¬
ËùÒÔKBM•kAN=
-2-(-1)
x1-0
-2-1
x2-0
=
3
x1x2
£¬
ÓÖÓÉÉÏÃæÖªkAN•kBM=k1•k2=-
1
4
£¬ËùÒÔx1x2=-12£¬
²»·ÁÉèx1£¼0£¬Ôòx2£¾0£¬Ôò
MN=|x1-x2|=x2-x1=x2+
12
x2
¡Ý2
x2
12
x2
=4
3
£¬
ËùÒÔµ±ÇÒ½öµ±x2=-x1=2
3
ʱ£¬MNÈ¡µÃ×îСֵ4
3
£®
£¨2£©ÉèM£¨x1£¬-2£©£¬N£¨x2£¬-2£©£¬
ÔòÒÔMNΪֱ¾¶µÄÔ²µÄ·½³ÌΪ
£¨x-x1£©£¨x-x2£©+£¨y+2£©2=0£¬
¼´x2+£¨y+2£©2-12-£¨x1+x2£©x=0£¬ÈôÔ²¹ý¶¨µã£¬
ÔòÓÐx=0£¬x2+£¨y+2£©2-12=0£¬½âµÃx=0£¬y=-2¡À2
3
£¬
ËùÒÔ£¬ÎÞÂÛµãPÈçºÎ±ä»¯£¬ÒÔMNΪֱ¾¶µÄÔ²ºã¹ý¶¨µã£¨0£¬-2¡À2
3
£©£®
µãÆÀ£º±¾Ì⿼²éÍÖÔ²µÄ·½³ÌºÍÐÔÖÊ£¬Ô²µÄ·½³ÌµÄÇ󷨣¬¿¼²éÖ±ÏßµÄбÂʹ«Ê½µÄÔËÓã¬ÒÔ¼°ºã¹ý¶¨µãÎÊÌ⣬ÔËËãºÍ»¯¼òÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©ÊǶ¨ÒåÔÚ£¨-2£¬2£©Éϵļõº¯Êý£¬Èôf£¨m-1£©£¾f£¨2m-1£©£¬ÔòʵÊýmµÄȡֵ·¶Î§Îª
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éè¡÷ABCµÄÄÚ½ÇA£¬B£¬CËù¶ÔµÄ±ßa£¬b£¬c³ÉµÈ±ÈÊýÁУ¬Ôò
sinA+cosA•tanC
sinB+cosB•tanC
µÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A¡¢£¨0£¬+¡Þ£©
B¡¢£¨0£¬
5
+1
2
£©
C¡¢£¨
5
-1
2
£¬+¡Þ£©
D¡¢£¨
5
-1
2
£¬
5
+1
2
£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÊýÁÐ1£¬2£¬2£¬3£¬3£¬3£¬4£¬4£¬4£¬4£¬¡­µÄµÚ15ÏîÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¹ØÓÚ¦ÁµÄ·½³Ìcos2¦Á+£¨1-m£©sin¦Á-2=0ÔÚ[-
¦Ð
6
£¬
¦Ð
2
]ÉÏÓн⣬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÏòÁ¿
m
=£¨cos¦Á-
2
3
£¬-1£©£¬
n
=£¨sin¦Á£¬1£©£¬
m
Óë
n
Ϊ¹²ÏßÏòÁ¿£¬ÇÒ¦Á¡Ê[-
¦Ð
2
£¬0]
£¨¢ñ£©Çósin¦Á+cos¦Á£»
£¨¢ò£©Çó
cos(-
¦Ð
2
-¦Á)cos(4¦Ð-¦Á)sin(¦Á-3¦Ð)
sin(¦Á+
1
2
¦Ð)sin(-4¦Ð-¦Á)
µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Õý·½ÌåABCD-A1B1C1D1ÖУ¬ÒìÃæÖ±ÏßA1BÓëAD1Ëù³É½ÇµÄ´óСΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈçͼËùʾ£¬ÒÑÖª¾ØÐÎABCD£¬PÎªÆ½ÃæABCDÍâÒ»µã£¬ÇÒPA¡ÍÃæABCD£¬M¡¢N·Ö±ðΪPC£¬PDÉϵĵ㣬ÇÒPM£ºMC=2£º1£¬NΪPDµÄÖе㣬ÔòÂú×ã
MN
=x
AB
+y
AD
+z
AP
µÄʵx=
 
£¬y=
 
£¬z=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

PÊÇÍÖÔ²
x2
25
+
y2
9
=1ÉÏÒ»µã£¬F1£¬F2·Ö±ðΪ×ó¡¢ÓÒ½¹µã£¬¡÷PF1F2µÄÄÚÇÐÔ²µÄ°ë¾¶Îª1£¬Ôò|
PF1
+
PF2
|µÄֵΪ£¨¡¡¡¡£©
A¡¢8
B¡¢4
3
C¡¢4
D¡¢
25
4
7

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸