精英家教网 > 高中数学 > 题目详情
设函数f(x)=ax3+bx+c(a≠0)是定义在R上的奇函数,其图象在点(1,f(1))处的切线方程是6x+y+4=0.
(Ⅰ)求a,b,c的值;
(Ⅱ)求函数f(x)的单调递增区间,并求函数f(x)在[﹣1,3]上的最大值和最小值.
解:(Ⅰ)因为f(x)为奇函数,所以f(﹣x)=﹣f(x).
即﹣ax3﹣bx+c=﹣ax3﹣bx﹣c.
解得c=0.
又直线6x+y+4=0的斜率为﹣6,
所以f '(1)=3a+b=﹣6.
把x=1代入6x+y+4=0中得
f(1)=﹣10
点(1,﹣10)在函数f(x)的图象上,则a+b=﹣10
解得a=2,b=﹣12.
所以a=2,b=﹣12,c=0.
(Ⅱ)由(Ⅰ)知f(x)=2x3﹣12x.所以

所以函数f(x)的单调增区间是
因为f(﹣1)=10,,f(3)=18,
f(x)在[﹣1,3]上的最大值是f(3)=18,最小值是
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax+
xx-1
(x>1),若a是从1,2,3三个数中任取一个数,b是从2,3,4,5四个数中任取一个数,求f(x)>b恒成立的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+b的图象经过点(1,7),又其反函数的图象经过点(4,0),求函数的解析式,并求f(-2)、f(
12
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+bx-cx,其中a,b,c是△ABC的三条边,且c>a,c>b,则“△ABC为钝角三角形”是“?x∈(1,2),使f(x)=0”(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•杨浦区一模)(文)设函数f(x)=ax+1-2(a>1)的反函数为y=f-1(x),则f-1(-1)=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网设函数f(x)=(a
x
-
1
x
)n
,其中n=3
π
sin(π+x)dx,a为如图所示的程序框图中输出的结果,则f(x)的展开式中常数项是(  )
A、-
5
2
B、-160
C、160
D、20

查看答案和解析>>

同步练习册答案