精英家教网 > 高中数学 > 题目详情

为了解某市今年初二年级男生的身体素质状况,从该市初二年级男生中抽取了一部分学生进行“掷实心球”的项目测试.成绩低于6米为不合格,成绩在6至8米(含6米不含8米)的为及格,成绩在8米至12米(含8米和12米,假定该市初二学生掷实心球均不超过12米)为优秀.把获得的所有数据,分成五组,画出的频率分布直方图如图所示.已知有4名学生的成绩在10米到12米之间.

(Ⅰ)求实数的值及参加“掷实心球”项目测试的人数;
(Ⅱ)根据此次测试成绩的结果,试估计从该市初二年级男生中任意选取一人,“掷实心球”成绩为优秀的概率;
(Ⅲ)若从此次测试成绩不合格的男生中随机抽取2名学生再进行其它项目的测试,求所抽取的2名学生来自不同组的概率.

(Ⅰ),参加“掷实心球”的项目测试的人数为40人;(Ⅱ)成绩为优秀的概率为;(Ⅲ)

解析试题分析:(Ⅰ)有频率分布直方图可知,所有面积之和等于,由此可求出,有频率的求法,可计算出总人数,值得注意的是:频率分布直方图用面积表示频率,而不是用组高;(Ⅱ)有频率与概率之间的关系,可估计从该市初二年级男生中任意选取一人,“掷实心球”成绩为优秀的概率;(Ⅲ)分别求出不合格的各组人数,有古典概型的概率求法,写出总的抽去方法数,找出符合条件的方法数,从而求出概率.
试题解析:(Ⅰ)由题意可知,解得.所以此次测试总人数为. 所以此次参加“掷实心球”的项目测试的人数为40人.
(Ⅱ)由图可知,参加此次“掷实心球”的项目测试的初二男生,成绩优秀的频率为,则估计从该市初二年级男生中任意选取一人,“掷实心球”成绩为优秀的概率为
(Ⅲ)设事件A:从此次测试成绩不合格的男生中随机抽取2名学生来自不同组.由已知,测试成绩在有2人,记为;在有6人,记为.  从这8人中随机抽取2人有共28种情况.
事件A包括共12种情况. 所以
答:随机抽取的2名学生来自不同组的概率为
考点:频率分布直方图,古典概型,考查学生的运算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某工厂有25周岁以上(含2S周岁)工人300名,25周岁以下工人200名为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100),分别加以统计,得到如图所示的频率分布直方图。

(1)求样本中“25周岁以上(含25周岁)组”抽取的人数、日生产量平均数;
(2)若“25周岁以上组”中日平均生产90件及90件以上的称为“生产能手”;“25周岁以下组”中日平均生产不足60件的称为“菜鸟”。从样本中的“生产能手”和”菜鸟”中任意抽取2人,求这2人日平均生产件数之和X的分布列及期望。(“生产能手”日平均生产件数视为95件,“菜鸟”日平均生产件数视为55件)。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某社团组织名志愿者利用周末和节假日参加社会公益活动,活动内容是:1.到各社区宣传慰问,倡导文明新风;2.到指定的医院、福利院做义工,帮助那些需要帮助的人.各位志愿者根据各自的实际情况,选择了不同的活动项目,相关的数据如下表所示:

 
宣传慰问
义工
总计
岁至



大于



总计



(1)分层抽样方法在做义工的志愿者中随机抽取名,年龄大于岁的应该抽取几名?
(2)上述抽取的名志愿者中任取名,求选到的志愿者年龄大于岁的人数的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

口袋中有n(n∈N)个白球,3个红球.依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X,若P(X=2)=求:
(1)n的值;
(2)X的概率分布与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

从某学校高三年级男生随机抽取若干名测量身高,发现测量数据全部介于155cm和195cm之间且每个男生被抽取到的概率为,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165),┅,第八组[190,195),右图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组的频数均为4,第六组,第七组,第八组的频率依次构成等差数列。

(I)补充完整频率分布直方图,并估计该校高三年级全体男生身高不低于180cm的人数;
(II)从最后三组中任取2名学生参加学校篮球队,求他们来自不同组的事件概率。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某数学老师对本校2013届高三学生的高考数学成绩按1:200进行分层抽样抽取了20名学生的成绩,并用茎叶图记录分数如图所示,但部分数据不小心丢失,同时得到如下所示的频率分布表:

分数段(分)
 
[50,70)
 
[70,90)
 
[90,110)
 
[110,130)
 
[130,150)
 
总计
 
频数
 
 
 
 
 
 
 
b
 
 
 
 
 
频率
 
a
 
0.25
 
 
 
 
 
 
 
 
 

(1)求表中a,b的值及分数在[90,100)范围内的学生人数,并估计这次考试全校学生数学成绩的及格率(分数在[90,150)内为及格):
(2)从成绩在[100,130)范围内的学生中随机选4人,
设其中成绩在[100,110)内的人数为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

从某校高三上学期期末数学考试成绩中,随机抽取了60名学生的成绩得到频率分布直方图如下:

(Ⅰ)根据频率分布直方图,估计该校高三学生本次数学考试的平均分;
(Ⅱ)若用分层抽样的方法从分数在的学生中共抽取3人,该3人中成绩在的有几人?
(Ⅲ)在(Ⅱ)中抽取的3人中,随机抽取2人,求分数在各1人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某校高三有甲、乙两个班,在某次数学测试中,每班各抽取5份试卷,所抽取的平均得分相等(测试满分为100分),成绩统计用茎叶图表示如下:


 

9 8
8
4  8 9
2 1 0
9
  6
 
(1)求
(2)学校从甲班的5份试卷中任取两份作进一步分析,在抽取的两份样品中,求至多有一份得分在 之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:

 
喜爱打篮球
不喜爱打篮球
合计
男生
 
5
 
女生
10
 
 
合计
 
 
50
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为
(1)请将上面的列联表补充完整;
(2)是否在犯错误的概率不超过0.5%的前提下认为喜爱打篮球与性别有关?说明你的理由.下面的临界值表供参考:

0.15
0.10
0.05
0.025
0.010
0.005]
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 (参考公式:,其中)

查看答案和解析>>

同步练习册答案