精英家教网 > 高中数学 > 题目详情
10.设函数f(x)=sinx•cosx(x∈R),则函数f(x)在[0,π]上的单调递减区间为(  )
A.[$\frac{π}{6}$,$\frac{π}{3}$]B.[$\frac{π}{6}$,$\frac{π}{2}$]C.[$\frac{π}{4}$,$\frac{3π}{4}$]D.[$\frac{3π}{4}$,π]

分析 将函数f(x)=sinx•cosx=$\frac{1}{2}$sin2x结合正弦函数性质求解单调递减区间,即可得在[0,π]上的单调递减区间.

解答 解:函数f(x)=sinx•cosx=$\frac{1}{2}$sin2x,
令$\frac{π}{2}+2kπ≤2x≤\frac{3π}{2}+2kπ$,k∈Z.
得:$\frac{π}{4}+kπ≤x≤\frac{3π}{4}+kπ$.
当k=0时,可得函数f(x)在[0,π]上的单调递减区间为[$\frac{π}{4}$,$\frac{3π}{4}$].
故选:C.

点评 本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知函数$f(x)=2{sin^2}({x-\frac{π}{6}})-1$(x∈R),则下列结论正确的是(  )
A.函数f(x)是最小正周期为π的奇函数B.函数f(x)的图象关于直线$x=\frac{π}{12}$对称
C.函数f(x)在区间$[{\frac{π}{6},\frac{5π}{12}}]$上是增函数D.函数f(x)的图象关于点$({-\frac{π}{12},0})$对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.圆x2+y2=1与圆(x+1)2+(y+4)2=16的位置关系是(  )
A.相外切B.相内切C.相交D.相离

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列命题中正确的有(  )
①命题?x∈R,使sin x+cos x=$\sqrt{3}$的否定是“对?x∈R,恒有sin x+cos x≠$\sqrt{3}$”;
②“a≠1或b≠2”是“a+b≠3”的充要条件;
③命题“若x=y,则sinx=siny”的逆否命题为假命题
④十进制数66化为二进制数是1000010(2)
A.①②③④B.①④C.②③D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$为互相垂直的单位向量,则向量$\overrightarrow{a}$-$\overrightarrow{b}$=(  )
A.3$\overrightarrow{{e}_{2}}$-$\overrightarrow{{e}_{1}}$B.-2$\overrightarrow{{e}_{1}}$-4$\overrightarrow{{e}_{2}}$C.$\overrightarrow{{e}_{1}}$-3$\overrightarrow{{e}_{2}}$D.3$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设向量$\overrightarrow{m}$=(sinx,-1),向量$\overrightarrow{n}$=($\sqrt{3}$cosx,-$\frac{1}{2}$),函数f(x)=($\overrightarrow{m}$+$\overrightarrow{n}$)•$\overrightarrow{m}$.
(1)求f(x)的最小正周期T;
(2)在△ABC中,角A、B、C所对的边分别为a、b、c,a=2$\sqrt{3}$,c=4,若f(x)在[0,$\frac{π}{2}$]上的最大值为f(A),求A和b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某学校有长度为14米的旧墙一面,现准备利用这面旧墙建造平面图形为矩形,面积为126m2的活动室,工程条件是:
①建1m新墙的费用为a元;
②修1m旧墙的费用是$\frac{a}{4}$元;
③拆去1m旧墙所得的材料,建1m新墙的费用为$\frac{a}{2}$元,经过讨论有两种方案:
(1)问如何利用旧墙的一段x米(x<14)为矩形厂房的一面边长;
(2)矩形活动室的一面墙的边长x≥14,利用旧墙,即x为多少时建墙的费用最省?
(1)(2)两种方案,哪种方案最好?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若a,b∈R,i为虚数单位,且(2a+i)i=b+i,则a,b的值分别是(  )
A.a=$\frac{1}{2}$,b=1B.a=$\frac{1}{2}$,b=-1C.a=-$\frac{1}{2}$,b=1D.a=-$\frac{1}{2}$,b=-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知a∈R,函数$f(x)=\frac{{{e^x}-a}}{x}-alnx$(e=2.71828…是自然对数的底数).
(Ⅰ)函数f(x)是否存在极大值,若存在,求极大值点,若不存在,说明理由;
(Ⅱ)设$g(x)=\frac{e^x}{1+xlnx}$,证明:对任意x>0,g(x)>1.

查看答案和解析>>

同步练习册答案