精英家教网 > 高中数学 > 题目详情
一个口袋中装有大小相同的个红球()和个白球,一次摸奖从中摸两个球,两个球的颜色不同则为中奖。
(Ⅰ)试用表示一次摸奖中奖的概率
(Ⅱ)记从口袋中三次摸奖(每次摸奖后放回)恰有一次中奖的概率为,求的最大值.
(Ⅲ)在(Ⅱ)的条件下,将个白球全部取出后,对剩下的个红球全部作如下标记:记上号的有个(),其余的红球记上号,现从袋中任取一球。表示所取球的标号,求的分布列、期望和方差.
(1);(2)n=20时,m的最大值为4/9;
(3).
第一问中,利用一次摸奖从n+5个球中任取两个,有种方法。它们是等可能的,其中两个球的颜色不同的方法有种,故一次摸奖中奖的概率为
第二问中,
设每次摸奖中奖的概率为,三次摸奖中恰有一次中奖的概率是:
利用导数的思想求解最值。
第三问中,由(Ⅱ)知:记上0号的有10个红球,从中任取一球,有20种取法,它们是等可能的.故的可能取值为0,1,2,3,4求解各个概率值,然后求解期望和方差即可。
解:(Ⅰ)一次摸奖从n+5个球中任取两个,有种方法。
它们是等可能的,其中两个球的颜色不同的方法有种,
一次摸奖中奖的概率为.       ………5分
(Ⅱ)设每次摸奖中奖的概率为,三次摸奖中恰有一次中奖的概率是:
      ………  6分
m对p的导数
因而m在上为增函数,m在上为减函数。    ………8分
∴当p=1/3,即,n=20时,m的最大值为4/9.    ………  10分
(Ⅲ)由(Ⅱ)知:记上0号的有10个红球,从中任取一球,有20种取法,它们是等可能的.故的分布列是:






p





…12分
.       ………14分
.……..15分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次.记录如下:
甲:82 81 79 78 95 88 93 84    乙:92 95 80 75 83 80 90 85
(1)画出甲、乙两位学生成绩的茎叶图,指出学生乙成绩的中位数;
(2)现要从中选派一人参加数学竞赛,从平均状况和方差的角度考虑,你认为派哪位学生参加合适?请说明理由;
(3)若将频率视为概率,对学生甲在今后的三次数学竞赛成绩进行预测,记这三次成绩中高于80分的次数为,求的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.已知盒子中有4个红球,2个白球,从中一次抓三个球
(1)求没有抓到白球的概率;
(2)记抓到球中的红球数为X ,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设随机变量的分布列为下表所示且,则  (   )

0
1
2
3

0.1


0.1
    A.-0.2         B.0.1           C.0.2           D.-0.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某大学对该校参加某项活动的志愿者实施“社会教育实施”学分考核,该大学考核只有合格和优秀两个等次.若某志愿者考核为合格,授予个学分;考核为优秀,授予个学分.假设该校志愿者甲、乙考核为优秀的概率分别为,乙考核合格且丙考核优秀的概率为.甲、乙、丙三人考核所得等次相互独立.
(1)求在这次考核中,志愿者甲、乙、丙三人中至少有一名考核为优秀的概率;
(2)记在这次考核中,甲、乙、丙三名志愿者所得学分之和为随机变量,求随机变量
分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
小白鼠被注射某种药物后,只会表现为以下三种症状中的一种:兴奋、无变化(药物没有发生作用)、迟钝.若出现三种症状的概率依次为现对三只小白鼠注射这种药物.
(Ⅰ)求这三只小白鼠表现症状互不相同的概率;
(Ⅱ)用表示三只小白鼠共表现症状的种数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
在一个不透明的盒子中,放有标号分别为1,2,3的三个大小相同的小球,现从这个盒子中,有放回地先后取得两个小球,其标号分别为,记
(1)求随机变量的最大值,并求事件“取得最大值”的概率;
(2)求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

牧场的10头牛,因误食疯牛病毒污染的饲料被感染,已知该病的发病率为0.02,设发病牛的头数为X,则D(X)等于_____________

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设随机变量X只能取5,6,7,…,16这12个值,且取每一个值的概率均相等,则P(X>8)=________.若P(X<x)=,则x的范围是________

查看答案和解析>>

同步练习册答案