精英家教网 > 高中数学 > 题目详情
在等比数列{an}中,已知a2=2,a3=4.
(1)求数列{an}的通项an
(2)设bn=an+1,求数列{bn}的前n项和Tn
(1)由a2=2,a3=4,得q=
a3
a2
=2,∴a1=
a2
q
=1,从而an=2n-1
(2)∵bn=an+1=2n-1+1
Tn=
1-2n
1-2
+n=2n-1+n
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知数列{an}的通项公式an=-2n+11,前n项和Sn
(1)求数列{an}的前n项和Sn
(2)|a1|+|a2|+|a3|+…+|a14|.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设等差数列{an}的前n项和为Sn,已知a3=9,S6=66.
(1)求数列{an}的通项公式an及前n项的和Sn
(2)设数列{
1
anan+1
}
的前n项和为Tn,证明:Tn
1
4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在等差数列{an}中,a1=8,a3=4.
(1)求数列{an}的通项公式;
(2)设Sn=|a1|+|a2|+…+|an|,求Sn
(3)设bn=
1
n(12-an)
(n∈N*),求Tn=b1+b2+…+bn(n∈N*).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

数列{an}的通项公式是an=
1
n+1
+
n
,若前n项和为3,则项数n的值为(  )
A.14B.15C.16D.17

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等差数列{an}满足a3=7,a5+a7=26,{an}的前n项和为Sn
(1)求an及Sn
(2)令bn=
1
a2n
-1
(n∈N),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
2
n•(an+2)
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*
(Ⅰ)证明数列{an-n}是等比数列;
(Ⅱ)求数列{an}的前n项和Sn
(Ⅲ)证明不等式Sn+1≤4Sn,对任意n∈N*皆成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求和:

查看答案和解析>>

同步练习册答案