精英家教网 > 高中数学 > 题目详情
6.若复数z=1-i(i为虚线单位),$\overline z$是z的共轭复数,则z•$\overline z$的实部为(  )
A.-1B.1C.0D.2

分析 复数z=1-i(i为虚线单位),$\overline z$是z的共轭复数,可得$\overline{z}$=1+i.再利用复数的运算性质、实部的定义即可得出.

解答 解:复数z=1-i(i为虚线单位),$\overline z$是z的共轭复数,∴$\overline{z}$=1+i.
则z•$\overline z$=2的实部为2.
故选:D.

点评 本题考查了共轭复数、复数的运算性质、实部的定义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若二次函数f(x)=x2+1的图象与曲线C:g(x)=aex+1(a>0)存在公共切线,则实数a的取值范围为(  )
A.(0,$\frac{4}{{e}^{2}}$]B.(0,$\frac{8}{{e}^{2}}$]C.[$\frac{4}{{e}^{2}}$,+∞)D.[$\frac{8}{{e}^{2}}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=$\left\{\begin{array}{l}x(1+mx),x≥0\\ x(1-mx),x<0\end{array}$,若关于x的不等式f(x)>f(x+m)的解集为M,且[-1,1]⊆M,则实数m的取值范围是(1-$\sqrt{2}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知直线x+y=b是函数y=ax+$\frac{2}{x}$的图象在点P(1,m)处的切线,则a+b-m=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.某中学共有学生2000人,其中高一年级共有学生650人,高二男生有370人.现在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19.则该校高三学生共有600人.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.命题:“所有正数的平方都不大于0”的否定存在正数的平方大于0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设i为虚数单位,复数(2-i)z=1+i,则z的共轭复数$\overline z$在复平面中对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.△ABC的外接圆圆心为O,半径为2,$\overrightarrow{OA}$+$\overrightarrow{AB}$+$\overrightarrow{AC}$为零向量,且|${\overrightarrow{OA}}$|=|${\overrightarrow{AB}}$|.则$\overrightarrow{CA}$在$\overrightarrow{BC}$方向上的投影为(  )
A.-3B.$-\sqrt{3}$C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\frac{alnx}{x+1}$+$\frac{b}{x}$,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0,则a+b=(  )
A.3B.2C.1D.0

查看答案和解析>>

同步练习册答案