精英家教网 > 高中数学 > 题目详情
设函数f(x)=(x2-20x+c1)(x2-20x+c2)…(x2-20x+c10),集合M={x|f(x)=0}={x1,x2,…,x19}⊆N*,设c1≥c2≥…≥c10,则c1-c10=(  )
分析:根据已知M={x|f(x)=0}={x1,x2,…,x19}⊆N*,可得函数f(x)=(x2-20x+c1)(x2-20x+c2)…(x2-20x+c10),共有19个零点,结合韦达定理可得xn=n,1≤n≤19,n∈N*
结合c1≥c2≥…≥c10,求出c1,c10,代入c1-c10可得答案.
解答:解:∵函数f(x)=(x2-20x+c1)(x2-20x+c2)…(x2-20x+c10)
∵M={x|f(x)=0}={x1,x2,…,x19}⊆N*
令0<x1<x2<…<x19
则由韦达定理可得
x1+x19=x2+x18=…=x10+x10=20
则x19<20
故xn=n,1≤n≤19,n∈N*
∴x1•x19<x2•x18<…<x10•x10
又∵c1≥c2≥…≥c10
∴c10=x1•x19=19,c1=x10•x10=100
即c1-c10=100-19=81
故选D
点评:本题考查的知识点是一元二次方程的根的分布与系数的关系(韦达定理),函数的零点与方程的根的关系,其中根据已知得到xn=n,1≤n≤19,n∈N*,是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=p(x-
1
x
)-2lnx,g(x)=
2e
x
(p是实数,e为自然对数的底数)
(1)若f(x)在其定义域内为单调函数,求p的取值范围;
(2)若直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于点(1,0),求p的值;
(3)若在[1,e]上至少存在一点x0,使得f(x0)>g(x0)成立,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D),有x+l∈D,且f(x+1)≥f(x),则称f(x)为M上的高调函数.现给出下列三个命题:
①函数f(x)=(
12
)x
为R上的l高调函数;
②函数f(x)=sin2x为R上的π高调函数;
③如果定义域是[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围[2,+∞);
其中正确的命题是
②③
②③
(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数,且f(x+2)=f(x)恒成立;当x∈[0,1]时,f(x)=x3-4x+3.有下列命题:
f(-
3
4
) <f(
15
2
)

②当x∈[-1,0]时f(x)=x3+4x+3;
③f(x)(x≥0)的图象与x轴的交点的横坐标由小到大构成一个无穷等差数列;
④关于x的方程f(x)=|x|在x∈[-3,4]上有7个不同的根.
其中真命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案