精英家教网 > 高中数学 > 题目详情
12.同时掷两个质地均匀的骰子,向上点数之积为12的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{9}$C.$\frac{1}{18}$D.$\frac{1}{36}$

分析 列举出可能的实验结果,根据古典概型概率计算公式计算.

解答 解:同时掷两个质地均匀的骰子,共有6×6=36种不同的结果,
其中向上点数之积为12的基本事件有(2,6),(3,4),(4,3),(6,2)共4个,
∴P=$\frac{4}{36}$=$\frac{1}{9}$.
故选B.

点评 本题考查了古典概型的概率计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.在平面直角坐标系中,定义d(P,Q)=|x1-x2|+|y1-y2|为两点P(x1,y1),Q(x2,y2)之间的“折线距离”.则下列命题中:
①若A(-1,3),B(1,0),则有d(A,B)=5.
②到原点的“折线距离”等于1的所有点的集合是一个圆.
③若C点在线段AB上,则有d(A,C)+d(C,B)=d(A,B).
④到M(-1,0),N(1,0)两点的“折线距离”相等的点的轨迹是直线x=0.
真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=\frac{1}{3}{x^3}+\frac{1}{2}a{x^2}+bx({a,b∈R})$.
(1)若函数f(x)在(0,2)上存在两个极值点,求3a+b的取值范围;
(2)当a=0,b≥-1时,求证:对任意的实数x∈[0,2],$|{f(x)}|≤2b+\frac{8}{3}$恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={a,b,d},B={c,d},则A∪B等于(  )
A.{d}B.{a,c}C.{a,b,c}D.{a,b,c,d}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.抛物线y2=2x的准线方程为(  )
A.x=-1B.x=-$\frac{1}{2}$C.x=-$\frac{1}{4}$D.x=$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.阅读右边的程序框图,运行相应的程序,输出的结果为(  )
A.17B.10C.9D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.圆心坐标是(-1,2),半径长是$\sqrt{5}$的圆的方程为(x+1)2+(y-2)2=5.设直线y=2x与该圆相交于A,B两点,则弦AB的长为$\frac{6\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设曲线y=xn+1(n∈Z*)在点(1,1)处的切线与x轴的交点的横坐标为xn,则x1•x2•x3…•xn的值为(  )
A.$\frac{1}{n}$B.$\frac{n}{n+1}$C.$\frac{1}{n+1}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某校为了解高一学生周末的“阅读时间”,从高一年级中随机调查了100名学生进行调查,获得了每人的周末“阅读时间”(单位:小时),按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成样本的频率分布直方图如图所示.
(Ⅰ)求图中a的值;
(Ⅱ)估计该校高一学生周末“阅读时间”的中位数;
(Ⅲ)在[1,1.5),[1.5,2)这两组中采用分层抽样抽取7人,再从7人中随机抽取2人,求抽取的两人恰好都在一组的概率.

查看答案和解析>>

同步练习册答案