精英家教网 > 高中数学 > 题目详情
已知双曲线C:=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为3,直线y=2与C的两个交点间的距离为
(I)求a,b;
(II)设过F2的直线l与C的左、右两支分别相交于A、B两点,且|AF1|=|BF1|,证明:|AF2|、|AB|、|BF2|成等比数列.
【答案】分析:(I)由题设,可由离心率为3得到参数a,b的关系,将双曲线的方程用参数a表示出来,再由直线建立方程求出参数a即可得到双曲线的方程;
(II)由(I)的方程求出两焦点坐标,设出直线l的方程设A(x1,y1),B(x2,y2),将其与双曲线C的方程联立,得出x1+x2=,再利用|AF1|=|BF1|建立关于A,B坐标的方程,得出两点横坐标的关系,由此方程求出k的值,得出直线的方程,从而可求得:|AF2|、|AB|、|BF2|,再利用等差数列的性质进行判断即可证明出结论.
解答:解:(I)由题设知=3,即=9,故b2=8a2
所以C的方程为8x2-y2=8a2
将y=2代入上式,并求得x=±
由题设知,2=,解得a2=1
所以a=1,b=2
(II)由(I)知,F1(-3,0),F2(3,0),C的方程为8x2-y2=8    ①
由题意,可设l的方程为y=k(x-3),|k|<2代入①并化简得(k2-8)x2-6k2x+9k2+8=0
设A(x1,y1),B(x2,y2),
则x1≤-1,x2≥1,x1+x2=,于是
|AF1|==-(3x1+1),
|BF1|==3x2+1,
|AF1|=|BF1|得-(3x1+1)=3x2+1,即
=,解得,从而=-
由于|AF2|==1-3x1
|BF2|==3x2-1,
故|AB|=|AF2|-|BF2|=2-3(x1+x2)=4,|AF2||BF2|=3(x1+x2)-9x1x2-1=16
因而|AF2||BF2|=|AB|2,所以|AF2|、|AB|、|BF2|成等比数列
点评:本题考查直线与圆锥曲线的综合关系,考查了运算能力,题设条件的转化能力,方程的思想运用,此类题综合性强,但解答过程有其固有规律,一般需要把直线与曲线联立利用根系关系,解答中要注意提炼此类题解答过程中的共性,给以后解答此类题提供借鉴.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线C:-=1(0<<1)的右焦点为B,过点B作直线交双曲线C的右支于M、N两点,试确定的范围,使·=0,其中点O为坐标原点.

查看答案和解析>>

科目:高中数学 来源: 题型:

 (2012年高考湖南卷理科5)已知双曲线C :-=1的焦距为10 ,点P (2,1)在C 的渐近线上,则C的方程为

A.-=1  B.-=1  C.-=1    D.-=1

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广西南宁二中高三(下)5月月考数学试卷(文科)(解析版) 题型:解答题

已知双曲线C:=1(a>0,b>0)的离心率为,右准线方程为x=
(I)求双曲线C的方程;
(Ⅱ)设直线l是圆O:x2+y2=2上动点P(x,y)(xy≠0)处的切线,l与双曲线C交于不同的两点A,B,证明∠AOB的大小为定值.

查看答案和解析>>

科目:高中数学 来源:2014届湖南邵阳石齐学校高二第三次月考理科数学试卷(解析版) 题型:选择题

 已知双曲线C :-=1的焦距为10 ,点P (2,1)在C 的渐近线上,则C的方程为(   )

A. -=1  B. -=1  C. -=1    D. -=1

 

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试理科数学(湖南卷解析版) 题型:选择题

已知双曲线C :-=1的焦距为10 ,点P (2,1)在C 的渐近线上,则C的方程为

A、-=1  B、-=1  C、-=1    D、-=1[w~#

 

查看答案和解析>>

同步练习册答案