精英家教网 > 高中数学 > 题目详情
多面体MN-ABCD的底面ABCD为矩形,其正视图和侧视图如图,其中正视图为等腰梯形,侧视图为等腰三角形,则该多面体的体积是(  )
A、
16+
3
3
B、
8+6
3
3
C、
16
3
D、
20
3
考点:由三视图求面积、体积
专题:计算题,空间位置关系与距离
分析:将多面体补成一个侧棱长为4的直三棱柱,结合图形判断直三棱柱的底面三角形及相关几何量的数据,判断补的两个三棱锥的高,把数据代入棱柱与棱锥的体积公式计算.
解答: 解:将多面体补成一个侧棱长为4的直三棱柱,如图,
则直三棱柱的底面三角形如左视图所示,一条边长为2.该边上的高为2,
补的两个三棱锥的高都是1,
∴几何体的体积V=
1
2
×2×2×4-2×
1
3
×
1
2
×2×2×1=8-
4
3
=
20
3

故选:D.
点评:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知两点A(1,0),B(b,0),若抛物线y2=4x上存在点C使△ABC为等边三角形,则b=(  )
A、5
B、5或-
1
3
C、4
D、4或-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)、g(x)满足
f(x)
g(x)
=ax,且f′(x)g(x)<f(x)g′(x),
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,若有穷数列{
f(n)
g(n)
}(n∈N*)的前n项和为
127
128
,则n=(  )
A、4B、5C、6D、7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集为R,集合A={-1,0,1},B={x|(
1
2
x≤1},则A∩∁RB等于(  )
A、(-∞,0)
B、[0,+∞)
C、{-1}
D、{0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:

设变量x,y满足约束条件
y≤x
x+y≤1
y≥-1
,则z=2x-y的最大值为(  )
A、-3
B、
1
2
C、5
D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

过点P(4,2)作圆x2+y2=4的两条切线,切点分别为A、B,O为坐标原点,则△PAB的外接圆方程是(  )
A、(x-2)2+(y-1)2=5
B、(x-4)2+(y-2)2=20
C、(x+2)2+(y+1)2=5
D、(x+4)2+(y+2)2=20

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1nx+x-
a
x
(a≥-2),g(x)=ex-x
,其中e为自然对数的底数,且当x>0时f(x)≥3恒成立.
(Ⅰ)求g(x)的单调区间;
(Ⅱ)求实数a的所有可能取值的集合;
(Ⅲ)求证:f(x)+g(x)>4.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax-ex(a∈R).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)设g(x)=x2-2x+1,证明:当1<a<e时,对任意x1∈(-∞,+∞),总存在x2∈[0,1],使得f(x1)<g(x2)成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在R奇函数,当x≥0时,f(x)=x2-2x.
(1)求函数f(x)的解析式;
(2)若f(x)在闭区间[
1
2
,m]最大值为-
3
4
,最小值为-1,求m的取值范围.

查看答案和解析>>

同步练习册答案