精英家教网 > 高中数学 > 题目详情
(2012•绵阳二模)对于具有相同定义域D的函数f(x)和g(x),若对任意的x∈D,都有|f(x)-g(x)|≤1,则称f(x)和g(x)在D上是“密切函数”.给出定义域均为D={x|1≤x≤3}的四组函数如下:
①f(x)=x2-x+1,g(x)=3x-2
②f(x)=x3+x,g(x)=3x2+x-1
③f(x)=log2(x+1),g(x)=3-x
④f(x)=
3
2
sin(
π
3
x+
π
3
),g(x)=
1
4
cos
π
3
x-
3
4
sin
π
3
x
其中,函数f(x)印g(x)在D上为“密切函数”的是
①④
①④
分析:对照新定义,构造新函数h(x)=f(x)-g(x),利用导数的方法确定函数的单调性,从而确定函数的值域,利用若对任意的x∈D,都有|f(x)-g(x)|≤1,则称f(x)和g(x)在D上是“密切函数”,即可得到结论.
解答:解:①f(x)=x2-x+1,g(x)=3x-2
设h(x)=f(x)-g(x)=x2-4x+3
h(x)在[1,2]上单调减,在[2,3]上单调增
∴h(x)的最大值为0,最小值为-1
∴对任意的x∈[1,3],都有|f(x)-g(x)|≤1,符合定义
②f(x)=x3+x,g(x)=3x2+x-1
设h(x)=f(x)-g(x)=x3+3x2+1
h′(x)=3x2+6x,x∈[1,3],h′(x)>0
h(x)在[1,3]上单调增
∴h(x)的最大值为55,最小值为5,
∴对任意的x∈[1,3],|f(x)-g(x)|≤1不成立,不符合定义
③f(x)=log2(x+1),g(x)=3-x
设h(x)=f(x)-g(x)=log2(x+1)+x-3
h(x)在[1,3]上单调增
∴h(x)的最大值为2,最小值为-1,
∴对任意的x∈[1,3],|f(x)-g(x)|≤1不成立,不符合定义
④f(x)=
3
2
sin(
π
3
x+
π
3
),g(x)=
1
4
cos
π
3
x-
3
4
sin
π
3
x
设h(x)=f(x)-g(x)=
3
2
sin(
π
3
x+
π
3
)-[
1
4
cos
π
3
x-
3
4
sin
π
3
x]
=
3
2
sin(
π
3
x+
π
3
)-
1
2
cos(
π
3
x+
π
3

=sin(
π
3
x+
π
6

∵x∈[1,3],∴sin(
π
3
x+
π
6
)∈[-
1
2
,1]
∴对任意的x∈[1,3],都有|f(x)-g(x)|≤1,符合定义
故答案为:①④
点评:本题主要考查了新定义题,主要涉及了函数的单调性,函数的最值求法等,同时考查计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•绵阳二模)直线x-y=O 的倾斜角为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绵阳二模)要从60人中抽取6人进行身体健康检查,现釆用分层抽样方法进行抽取,若这60人中老年人和中年人分别是40人,20人,则老年人中被抽取到参加健康检查的人数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绵阳二模)平面内动点P(x,y)与A(-1,0),B(1,0)两点连线的斜率之积为1,则动点P的轨迹方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绵阳二模)若条件p:”a>2”条件q:“loga2<1”则p是q成立的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绵阳二模)设角α的终边经过点P(-3,4),那么sin(π-α)+2cos(-α)=(  )

查看答案和解析>>

同步练习册答案