【题目】判断命题“已知a , x为实数,如果关于x的不等式x2+(2a+1)x+a2+2≤0的解集非空,则a≥1”的逆否命题的真假.
【答案】【解答】
解:原命题:已知a , x为实数,如果关于x的不等式x2+(2a+1)x+a2+2≤0的解集非空,则a≥1.
逆否命题:已知a , x为实数,如果a<1,则关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集.
判断如下:
抛物线y=x2+(2a+1)x+a2+2开口向上,
判别式Δ=(2a+1)2-4(a2+2)=4a-7.
∵a<1,∴4a-7<0,
即抛物线y=x2+(2a+1)x+a2+2与x轴无交点,
∴关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集,故逆否命题为真。
【解析】直接由原命题写出其逆否命题,然后判断逆否命题的真假.
【考点精析】本题主要考查了复合命题的真假的相关知识点,需要掌握“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知e为自然对数的底数,设函数f(x)=xex , 则( )
A.1是f(x)的极小值点
B.﹣1是f(x)的极小值点
C.1是f(x)的极大值点
D.﹣1是f(x)的极大值点
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知全集U=R,集合A={x|1<x<3},B={x|x>2},则A∩UB等于( )
A.{x|1<x<2}
B.{x|1<x≤2}
C.{x|2<x<3}
D.{x|x≤2}
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果关于x的不等式|x﹣3|+|x﹣4|≤|a|的解集为空集.
(1)求实数a的取值范围;
(2)若实数b与实数a取值范围完全相同,求证:|1﹣ab|>|a﹣b|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“现代五项”是由现代奥林匹克之父顾拜旦先生创立的运动项目,包含射击、击剑、游泳、马术和越野跑五项运动.已知甲、乙、丙共三人参加“现代五项”.规定每一项运动的前三名得分都分别为a,b,c(a>b>c且a,b,c∈N*),选手最终得分为各项得分之和.已知甲最终得22分,乙和丙最终各得9分,且乙的马术比赛获得了第一名,则游泳比赛的第三名是( )
A.甲
B.乙
C.丙
D.乙和丙都有可能
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com