精英家教网 > 高中数学 > 题目详情
19.X=1!+2!+3!+…+100!,则X的个位数字为(  )
A.1B.3C.5D.7

分析 1!=1,2!=2,3!=6,4!=24,5!=120,n≥5时,n!的个位数字为0.即可得出.

解答 解:∵1!=1,2!=2,3!=6,4!=24,5!=120,n≥5时,n!的个位数字为0.
而1!+2!+3!+4!=33.
∴X的个位数字为3.
故选:B.

点评 本题考查了排列的计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.定义在R上的函数f(x)的图象关于y轴对称,且f(x)在[0,+∞)上单调递减,若关于x的不等式f(2mx-lnx-3)≥2f(3)-f(-2mx+lnx+3)在x∈[1,3]上恒成立,则实数m的取值范围为(  )
A.[$\frac{1}{2e}$,$\frac{ln6+6}{6}$]B.[$\frac{1}{e}$,$\frac{ln6+6}{3}$]C.[$\frac{1}{e}$,$\frac{ln3+6}{3}$]D.[$\frac{1}{2e}$,$\frac{ln3+6}{6}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(α)=$\frac{cos(\frac{π}{2}+α)•cos(π-α)}{sin(π+α)}$.
(1)化简f(α);
(2)若α是第三象限角,且cos(α-$\frac{3π}{2}$)=$\frac{1}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0.
(1)求证:对m∈R,直线l与圆C总有两个不同交点;
(2)设l与圆C交于不同两点A,B,求弦AB的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.(a+bi)(a-bi)(-a+bi)(-a-bi)等于(  )
A.(a2+b22B.(a2-b22C.a2+b2D.a2-b2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知x1,x2,…,xn的平均数为10,标准差为2,则2x1-1,2x2-1,…,2xn-1的平均数和标准差分别为(  )
A.19和2B.19和3C.19和4D.19和8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知总体中各个体的值由小到大依次为2,3,3,7,a,b,12,15,18,20(a,b∈N*),且总体的中位数为10,若要使该总体的方差最小,则a,b的取值分别是(  )
A.9,11B.10,10C.8,10D.10,11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.直线l过点P(2,1),与x轴,y轴的正半轴分布交于A,B两点,O为坐标原点.
(1)当直线l的斜率k=-1时,求△AOB的外接圆的面积;
(2)当△AOB的面积最小时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.定义点P(x0,y0)到直线l:ax+by+c=0(a2+b2≠0)的有向距离为:$d=\frac{{a{x_0}+b{y_0}+c}}{{\sqrt{{a^2}+{b^2}}}}$.已知点P1、P2到直线l的有向距离分别是d1、d2.以下命题正确的是(  )
A.若d1=d2=1,则直线P1P2与直线l平行
B.若d1=1,d2=-1,则直线P1P2与直线l垂直
C.若d1+d2=0,则直线P1P2与直线l垂直
D.若d1•d2≤0,则直线P1P2与直线l相交

查看答案和解析>>

同步练习册答案