【题目】汽车行业是碳排放量比较大的行业之一,欧盟从2012年开始就对二氧化碳排放量超过![]()
的
型汽车进行惩罚,某检测单位对甲、乙两类
型品牌汽车各抽取5辆进行二氧化碳排放量检测,记录如下(单位:
):
甲 | 80 | 110 | 120 | 140 | 150 |
乙 | 100 | 120 |
| 100 | 160 |
经测算发现,乙类
型品牌汽车二氧化碳排放量的平均值为
.
(Ⅰ)从被检测的5辆甲类
型品牌车中任取2辆,则至少有1辆二氧化碳排放量超过
的概率是多少?
(Ⅱ)求表中
,并比较甲、乙两类
型品牌汽车二氧化碳排放量的稳定性.
,其中,
表示
的平均数,
表示样本数量,
表示个体,
表示方差)
科目:高中数学 来源: 题型:
【题目】已知函数
,其导函数为![]()
当
时,若函数
在R上有且只有一个零点,求实数a的取值范围;
设
,点
是曲线
上的一个定点,是否存在实数
使得
成立?并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,直线
的参数方程为
(
为参数),在极坐标系(与直角坐标系
取相同的长度单位,且以原点
为极点,以
轴正半轴为极轴)中,圆
的方程为
.
(1)求圆
的直角坐标方程;
(2)设圆
与直线
交于点
,若点
的坐标为
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC的三个内角A,B,C所对的边分别是a,b,c,向量
=(cos B,cos C),
=(2a+c,b),且
⊥
.
(1)求角B的大小;
(2)若b=
,求a+c的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
.
(1)若函数
在区间
上存在零点,求实数
的取值范围;
(2)当
时,若对任意的
、
,
恒成立,求实数
的取值范围;
(3)若函数
在
上的值城为区间
,是否存在常数
,使得区间
的长度为
?若存在,求出
的值;若不存在,请说明理由.(注:区间
的长度为
).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
,(
为参数),以原点为极点,
轴的正半轴为极轴建立极坐标轴,曲线
的极坐标方程为
.
(1)求直线
的普通方程及曲线
的直角坐标方程;
(2)设直线
与曲线
交于
两点,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等比数列{an}的各项均为正数,且2a1+3a2=1,
=9a2a6.
(1)求数列{an}的通项公式;
(2)设bn=log3a1+log3a2+…+log3an,求数列
的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两名篮球队员轮流投篮直至某人投中为止,设甲每次投篮命中的概率为
,乙每次投篮命中的概率为
,而且不受其他次投篮结果的影响.设投篮的轮数为
,若甲先投,则
等于( )
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com