精英家教网 > 高中数学 > 题目详情
10.若f(x)=-$\frac{1}{2}$x2+mlnx在(1,+∞)是减函数,则m的取值范围是(  )
A.[1,+∞)B.(1,+∞)C.(-∞,1]D.(-∞,1)

分析 求出函数的导数,通过讨论m的范围讨论函数的单调性,从而确定m的范围即可.

解答 解:f(x)=-$\frac{1}{2}$x2+mlnx,
f′(x)=-x+$\frac{m}{x}$=$\frac{{-x}^{2}+m}{x}$,
m≤0时,f′(x)<0,f(x)在(0,+∞)递减,符合题意,
m>0时,只需-x2+m≤0在x∈(1,+∞)恒成立即可,
即m≤x2≤1,
综上:m≤1,
故选:C.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.不等式x-2y+3>0表示的区域在直线x-2y+3=0的(  )
A.右上方B.右下方C.左上方D.左下方

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.命题:?x∈Z,x2∈Z的否定是命题(  )
A.?x∈Z,x2∉ZB.?x∉Z,x2∉ZC.?x∈Z,x2∈ZD.?x∈Z,x2∉Z

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(理)如图,正方形ABCD和四边形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,EF=CE,AB=$\sqrt{2}$EF.
(Ⅰ)求证:AF∥平面BDE;
(Ⅱ)求证:CF⊥平面BDE;
(Ⅲ)求二面角A-BE-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,角A、B、C、所对的边分别为a、b、c,且$\sqrt{3}$asinB-bcosA=0,
(1)求角A的大小;(2)若a=1,求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=ax-1+4的图象恒过定点P,则点P的坐标是(  )
A.(1,5)B.(1,4)C.(0,4)D.(4,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}是等比数列,首项a1=1,公比q>0,且2a1,a1+a2+2a3,a1+2a2成等差数列.
(Ⅰ)求数列{an}的通项公式
(Ⅱ)若数列{bn}满足an+1=($\frac{1}{2}$)${\;}^{{a}_{n}{b}_{n}}$,Tn为数列{bn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.a,b,c∈R,则关于x的方程ax2+bx+c=0有一个正根和一个负根的充要条件为ac<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若F1、F2是双曲线$\frac{x^2}{4}-{y^2}=1$的两个焦点,点P在双曲线上,且点P的横坐标为8,则△F1PF2的面积为5$\sqrt{3}$.

查看答案和解析>>

同步练习册答案