为了倡导健康、低碳、绿色的生活理念,某市建立了公共自行车服务系统鼓励市民租用公共自行车出行,公共自行车按每车每次的租用时间进行收费,具体收费标准如下:
①租用时间不超过1小时,免费;
②租用时间为1小时以上且不超过2小时,收费1元;
③租用时间为2小时以上且不超过3小时,收费2元;
④租用时间超过3小时的时段,按每小时2元收费(不足1小时的部分按1小时计算)
已知甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过1小时的概率分别是0.4和0.5 ,租用时间为1小时以上且不超过2小时的概率分别是0.5和0.3.
(Ⅰ)求甲、乙两人所付租车费相
同的概率;
(Ⅱ)设甲、乙两人所付租车费之和为随机变量
,求
的分布列和数学期望E![]()
科目:高中数学 来源: 题型:
设等差数列{
}的前n项和为Sn,且S4=4S2,
.
(1)求数列{
}的通项公式;
(2)设数列{
}满足
,求{
}的前n项和Tn;
(3)是否存在实数K,使得Tn
恒成立.若有,求出K的最大值,若没有,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知椭圆
(a>b>0)经过点M(
,1),离心率为
.
(1)求椭圆的标准方程;
(2)已知点P(
,0),若A,B为已知椭圆上两动点,且满足
,试问直线AB是否恒过定点,若恒过定点,请给出证明,并求出该定点的坐标;若不过,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
寒假期间,我市某校学生会组织部分同学,用“10分制”随机调查“阳光花园”社区人们的幸福度,现从调查人群中随机抽取16名,如果所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶);若幸福度分数不低于8.5分,则该人的幸福度为“幸
福”.
(I)求从这16人中随机选取3
人,至少有2人为“幸福”的概率;
(II)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记
表示抽到“幸福”的人数,求
的分布列及数学期望.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com