精英家教网 > 高中数学 > 题目详情
14.设f(θ)=$\frac{2co{s}^{3}θ-co{s}^{2}(2π-θ)+sin(\frac{π}{2}+θ)-2}{2+2co{s}^{2}(π+θ)+cos(-θ)}$,求f($\frac{π}{3}$)的值.(提示:立方差公式:a3-b3=(a-b)•(a2+ab+b2)).

分析 先化简,再代值计算即可.

解答 解:设f(θ)=$\frac{2co{s}^{3}θ-co{s}^{2}(2π-θ)+sin(\frac{π}{2}+θ)-2}{2+2co{s}^{2}(π+θ)+cos(-θ)}$=$\frac{2co{s}^{3}θ-co{s}^{2}θ+cosθ-2}{2+2co{s}^{2}θ+cosθ}$,
∴f($\frac{π}{3}$)=$\frac{2×(\frac{1}{2})^{3}-(\frac{1}{2})^{2}+\frac{1}{2}-2}{2+2•(\frac{1}{2})^{2}+\frac{1}{2}}$=-$\frac{1}{2}$.

点评 本题主要考查三角函数的基本关系和诱导公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.函数f(x)=$\sqrt{2}$sin2x-$\sqrt{6}$cos2x(  )
A.在(-$\frac{π}{3}$,$\frac{π}{12}$)上单调递减B.在(-$\frac{π}{3}$,$\frac{π}{12}$)上单调递增
C.在(-$\frac{π}{6}$,$\frac{π}{6}$)上单调递减D.在($\frac{π}{12}$,$\frac{π}{3}$)上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设圆C:x2+y2+4x-6y=0.
(1)若圆C关于直线l:a(x-2y)-(2-a)(2x+3y-4)=0对称,求实数a;
(2)求圆C关于点A(-2,1)对称的圆的方程;
(3)若圆C与圆C1;x2+y2+Dx+2y+F=0关于直线x-2y+b=0对称,求D、F、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.$\sqrt{2}$sin($\frac{π}{4}$-x)+$\sqrt{6}$sin($\frac{π}{4}$+x)的化简结果是(  )
A.2$\sqrt{2}$sin($\frac{5π}{12}$+x)B.2$\sqrt{2}$sin(x-$\frac{5π}{12}$)C.2$\sqrt{2}$sin($\frac{7π}{12}$+x)D.2$\sqrt{2}$sin(x-$\frac{7π}{12}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=lg(tanx+$\sqrt{1+ta{n}^{2}x}$)为(  )
A.奇函数B.既是奇函数又是偶函数
C.偶函数D.既不是奇函数又不是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设f(x)=2$\sqrt{3}$cos(2x+$\frac{π}{6}$)+3.
(1)求f(x)的最大值及单调递减区间;
(2)若锐角α满足f(α)=3-2$\sqrt{3}$,求tan$\frac{4}{5}$α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x)=sinx+2cosx,若函数g(x)=f(x)-m在x∈(0,π)上有两个不同零点α、β,则cos(α+β)=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.定义方程f(x)=f′(x)的实数根x0叫做函数f(x)的“新驻点”,若函数g(x)=x,h(x)=ln(x+1),φ(x)=x3-1的新驻点分别为α,β,γ,则α,β,γ的大小关系为γ>α>β.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知α,β是三次函数f(x)=$\frac{1}{3}{x^3}+\frac{1}{2}a{x^2}$+2bx的两个极值点,且 α∈(0,1),β∈(1,2),则$\frac{b-1}{a-1}$的范围(  )
A.$(0,\frac{1}{2})$B.(0,1)C.$(-\frac{1}{2},0)$D.(-1,0)

查看答案和解析>>

同步练习册答案